3.3 ΣΥΝΔΥΑΣΤΙΚΗ Είδαμε ότι όταν ο δειγματικός χώρος Ω ενός πειράματος τύχης έχει πεπερασμένο πλήθος απλών ενδεχομένων και τα απλά αυτά ενδεχόμενα είναι ισοπίθανα, τότε η πιθανότητα ενός ενδεχομένου Α είναι: Επομένως, όταν έχουμε ισοπίθανα απλά ενδεχόμενα, ο υπολογισμός της P(A) ανάγεται στην απαρίθμηση των στοιχείων των συνόλων Ω και Α. Βασική Αρχή Απαρίθμησης Ας υποθέσουμε ότι κάποιος επιθυμεί να ταξιδέψει από τη Θεσσαλονίκη, μέσω Αθηνών, στο Ηράκλειο Κρήτης χωρίς να χρησιμοποιήσει το ΙΧ αυτοκίνητό του. Από τη Θεσσαλονίκη μπορεί να ταξιδέψει στην Αθήνα με τρένο (Τ) ή λεωφορείο (Λ) ή αεροπλάνο (Α) ή πλοίο (Π) και από την Αθήνα στο Ηράκλειο με πλοίο ή αεροπλάνο. Ενδιαφερόμαστε για τους διαφορετικούς τρόπους ως προς το ταξιδιωτικό μέσο με τους οποίους μπορεί να πάει κάποιος από τη Θεσσαλονίκη στο Ηράκλειο. |
Γενικά ισχύει η επόμενη βασική αρχή απαρίθμησης: Έστω ότι μια διαδικασία μπορεί να πραγματοποιηθεί σε ν διαδοχικές φάσεις φ1, φ2 ,..., φν. Αν η φάση φ1 μπορεί να πραγματοποιηθεί με κ1 τρόπους και για καθέναν από αυτούς η φάση φ2 μπορεί να πραγματοποιηθεί με κ2 τρόπους ,…, και για καθέναν από όλους αυτούς τους τρόπους η φάση φν μπορεί να πραγματοποιηθεί με κν τρόπους, τότε η διαδικασία αυτή μπορεί να πραγματοποιηθεί με κ1 · κ2 ·...· κν τρόπους. Επομένως, αν με μια διαδικασία η οποία πραγματοποιείται όπως ορίστηκε προηγουμένως, στην πρώτη φάση συμπληρώνεται το πρώτο στοιχείο μιας διατεταγμένης ν-άδας με κ1 τρόπους, στη δεύτερη φάση το δεύτερο στοιχείο με κ2 τρόπους ,…, στη ν-οστή φάσητο ν-στό στοιχείο με κν, τότε σύμφωνα με τη βασική αρχή απαρίθμησης μπορούν να σχηματισθούν κ1 · κ2 ·...· κν διαφορετικές διατεταγμένες ν-άδες. Διατάξεις Ας υποθέσουμε ότι μία επιτροπή με 5 μαθητές συνεδριάζει για να εκλέξει πρόεδρο, γραμματέα, και ταμία. Αν θέλουμε να βρούμε το πλήθος των διαφορετικών τριάδων που θα εκλεγούν για τις τρεις θέσεις σκεπτόμαστε ως εξής: Η διαδικασία εκλογής μπορεί να χωριστεί σε τρεις φάσεις: 1η φάση εκλογή προέδρου, 2η φάση εκλογή γραμματέα και 3η φάση εκλογή ταμία. Η 1η φάση μπορεί να γίνει με 5 τρόπους, όσα είναι και τα μέλη της επιτροπής. Η 2η φάση μπορεί να γίνει με 4 τρόπους, όσα είναι και τα μέλη της επιτροπής που απέμειναν ύστερα από την εκλογή του προέδρου. Η 3η φάση μπορεί να γίνει με 3 τρόπους, όσα είναι και τα μέλη της επιτροπής που απέμειναν ύστερα και από την εκλογή του ταμία. Επομένως, σύμφωνα με τη βασική αρχή απαρίθμησης, το πλήθος των διαφορετικών δυνατών τριάδων είναι 5 · 4 · 3 = 60. Καθεμιά από τις παραπάνω τριάδες λέγεται διάταξη των 5 ανά 3. Γενικά: |
Σύμφωνα με τον παραπάνω ορισμό δύο διατάξεις των ν ανά κ είναι διαφορετικές αν διαφέρουν ως προς ένα τουλάχιστον στοιχείο ή ως προς τη θέση που κατέχουν τα στοιχεία. Για παράδειγμα, οι διατάξεις (1, 2, 3), (1, 4, 3) και (3, 2, 1) είναι διαφορετικές μεταξύ τους. Mν= ν(ν - 1)(ν - 2)...3 · 2 · 1. Το γινόμενο 1 · 2 · 3...(ν - 2)(ν - 1)ν συμβολίζεται με ν! και διαβάζεται ν παραγοντικό. Επομένως Έτσι, αν στο προηγούμενο παράδειγμα θέλουμε να βάλουμε τους 5 μαθητές σε μια σειρά, τότε υπάρχουν M5 = 1 · 2 · 3 · 4 · 5 = 120 διαφορετικοί τρόποι με τους οποίους μπορούμε να τους τοποθετήσουμε. Επομένως Αν τώρα θέλουμε ο τύπος (3) να ισχύει και για κ = ν, επειδή = Mν = ν!, πρέπει Είναι λοιπόν λογικό να ορίσουμε 0!=1. |
Συνδυασμοί Ας υποθέσουμε ότι από 5 άτομα Α, Β, Γ, Δ και Ε θέλουμε να επιλέξουμε μια ομάδα 3 ατόμων, χωρίς να μας ενδιαφέρει η κατάταξη μέσα σ’ αυτήν την ομάδα. Αν x είναι ο αριθμός των διαφορετικών ομάδων που μπορούμε να επιλέξουμε, τότε από κάθε τέτοια ομάδα μπορούν να προκύψουν 3! διατεταγμένες ομάδες. Επομένως, ο συνολικός αριθμός των διατεταγμένων ομάδων θα είναι 3!x. Ο αριθμός αυτός όμως είναι το πλήθος των διατάξεων . Επομένως, θα είναι = 3!x, οπότε Πιο συγκεκριμένα οι ομάδες αυτές θα είναι: Γενικά: Το πλήθος των συνδυασμών των ν στοιχείων ανά κ συμβολίζεται με και αν εργαστούμε όπως στο προηγούμενο παράδειγμα, βρίσκουμε ότι Επομένως Σύμφωνα με τον παραπάνω ορισμό δύο συνδυασμοί των ν ανά κ είναι διαφορετικοί αν διαφέρουν κατά ένα τουλάχιστον στοιχείο. |
ΕΦΑΡΜΟΓΕΣ 1. Στο τυχερό παιχνίδι του ΠΡΟΠΟ συμπληρώνουμε καθεμιά από τις 13 θέσεις με ένα από τα στοιχεία 1, 2, Χ που αντιστοιχούν σε πρόβλεψη: νίκης της γηπεδούχου ομάδας (1), νίκης της φιλοξενούμενης ομάδας (2), ισοπαλίας (Χ).
ΛΥΣΗ i) Μια στήλη ΠΡΟΠΟ είναι μια 13-άδα, στην οποία κάθε θέση μπορεί να συμπληρωθεί με τρεις διαφορετικούς τρόπους. Επομένως, σύμφωνα με τη βασική αρχή απαρίθμησης, υπάρχουν συνολικά διαφορετικές στήλες. ii) • Ευνοϊκή περίπτωση για το Α είναι κάθε στήλη στην οποία καθεμιά από τις 12 θέσεις συμπληρώνεται με το σωστό αποτέλεσμα και η εναπομένουσα θέση συμπληρώνεται με λαθεμένη πρόβλεψη. Υπάρχουν για να επιλέξουμε τους 12 αγώνες που συμπληρώνονται με το σωστό αποτέλεσμα, και 2 τρόποι για να συμπληρώσουμε τον αγώνα που απομένει με λάθος πρόβλεψη. Επομένως, το πλήθος των ευνοϊκών περιπτώσεων για το Α είναι Άρα, η ζητούμενη πιθανότητα είναι ίση με • Ευνοϊκή περίπτωση για το Β είναι κάθε στήλη στην οποία καθεμιά από τις 11 θέσεις συμπληρώνεται με το σωστό αποτέλεσμα και καθεμιά από τις υπόλοιπες 2 θέσεις συμπληρώνεται με μια λαθεμένη πρόβλεψη. Υπάρχουν τρόποι για να επιλέξουμε τις 11 θέσεις με το σωστό αποτέλεσμα και 2 τρόποι για να συμπληρώσουμε καθεμιά από τις υπόλοιπες 2 θέσεις με λαθεμένη πρόβλεψη. Επομένως, το πλήθος των ευνοϊκών περιπτώσεων για το Β είναι Άρα, η ζητούμενη πιθανότητα είναι ίση με |
2. Στο τυχερό παιχνίδι του ΛΟΤΤΟ “6 από 49”, αν παίξουμε μια στήλη, ποια είναι η πιθανότητα του ενδεχομένου Α: “να πετύχουμε 4 ακριβώς σωστά νούμερα”;
ΛΥΣΗ Επειδή τελικά δεν έχει σημασία η σειρά κλήρωσης του κάθε αριθμού, οι δυνατές περιπτώσεις του πειράματος είναι τόσες όσοι και οι συνδυασμοί των 49 ανά 6, δηλαδή Για να βρούμε το πλήθος των ευνοϊκών περιπτώσεων σκεφτόμαστε ως εξής: Υπάρχουν τρόποι για να επιλέξουμε 4 σωστά νούμερα από τα 6 που κληρώθηκαν. Στη συνέχεια μένουν τρόποι για να επιλέξουμε τα 2 λάθος νούμερα. Επομένως, το πλήθος των ευνοϊκών περιπτώσεων είναι Άρα 3. Ποια είναι η πιθανότητα μεταξύ κ μαθητών (κ ≤ 365) δύο τουλάχιστον να έχουν γενέθλια την ίδια μέρα; (Ο χρόνος υπολογίζεται με 365 μέρες).
ΛΥΣΗ Αν Α είναι το ενδεχόμενο “δύο τουλάχιστον μαθητές να έχουν γενέθλια την ίδια μέρα”, τότε A' είναι το ενδεχόμενο “οι κ μαθητές να έχουν γενέθλια σε διαφορετικές μέρες” και ισχύει P(A) = 1 - P(A'). Επομένως ο υπολογισμός της P(A) ανάγεται στον υπολογισμό της P(A'). Το πλήθος των δυνατών περιπτώσεων του πειράματος είναι N(Ω) = 365 · 365 · 365 ··· 365 = 365κ, αφού ένας μαθητής μπορεί να έχει γεννηθεί σε μια από τις 365 μέρες του έτους. Οι ευνοϊκές περιπτώσεις για το A' είναι 365 · (365 - 1) · (365 - 2)...[(365 - (κ - 1)], αφού οι κ μαθητές πρέπει να έχουν γεννηθεί σε διαφορετικές μέρες του έτους. Επομένως, Άρα Οι τιμές του P(A) για μερικές τιμές του κ δίνονται στον επόμενο πίνακα: Παρατηρούμε ότι ήδη μεταξύ 23 ατόμων η πιθανότητα δύο άτομα να έχουν γενέθλια την ίδια μέρα είναι μεγαλύτερη από 50%, ενώ μεταξύ 70 ατόμων το ενδεχόμενο αυτό είναι σχεδόν βέβαιο. |
Ασκήσεις
|
|