6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Εισαγωγή Σε πολλά καθημερινά φαινόμενα εμφανίζονται δύο μεγέθη, τα οποία μεταβάλλονται έτσι, ώστε η τιμή του ενός να καθορίζει την τιμή του άλλου. Η διαδικασία με την οποία κάθε τιμή του ενός μεγέθους αντιστοιχίζεται σε μια ακριβώς τιμή του άλλου μεγέθους, πολλές φορές περιγράφεται από ένα μαθηματικό τύπο, όπως φαίνεται στα παρακάτω παραδείγματα.
Υπάρχουν όμως και περιπτώσεις όπου η διαδικασία αντιστοίχισης ανάμεσα στις τιμές δύο μεγεθών δεν περιγράφεται ή έστω δεν γνωρίζουμε αν περιγράφεται από κάποιο τύπο. Για παράδειγμα:
Παρατηρούμε ότι σε όλα τα παραπάνω παραδείγματα υπάρχει κάποια διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Μια τέτοια διαδικασία λέγεται συνάρτηση από το Α στο Β. Δηλαδή: ΟΡΙΣΜΟΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας)με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώςστοιχείο του συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισμού ή σύνολο ορισμού της ƒ . Οι συναρτήσεις παριστάνονται συνήθως με τα μικρά γράμματα ƒ, g, h κτλ. του Λατινικού αλφαβήτου. Αν με μια συνάρτηση ƒ από το Α στο Β, το x Α αντιστοιχίζεται στο yΒ , τότε γράφουμε: y = ƒ(x) και διαβάζουμε «y ίσον ƒ του x». Το ƒ(x) λέγεται τότε τιμή της ƒ στο x. Το γράμμα x, που παριστάνει οποιοδήποτε στοιχείο του πεδίου ορισμού της ƒ, ονομάζεται ανεξάρτητη μεταβλητή, ενώ το y, που παριστάνει την τιμή της συνάρτησης στο x, ονομάζεται εξαρτημένη μεταβλητή. Το σύνολο, που έχει για στοιχεία του τις τιμές ƒ(x) για όλα τα xΑ, λέγεται σύνολο τιμών της ƒ και το συμβολίζουμε με ƒ(Α) . Η παραπάνω συνάρτηση συμβολίζεται ως εξής:
Έτσι π.χ. η συνάρτηση ƒ με την οποία κάθε μη αρνητικός αριθμός αντιστοιχίζεται στην τετραγωνική του ρίζα, συμβολίζεται ως εξής:
Για καλύτερη κατανόηση του παραπάνω ορισμού ας δούμε τα παραδείγματα που ακολουθούν: ΠΑΡΑΔΕΙΓΜΑ 1o Έστω ƒ η συνάρτηση με την οποία κάθε ημέρα μιας ορισμένης εβδομάδας ενός μήνα αντιστοιχίζεται στην υψηλότερη θερμοκρασία της.
Για τη συνάρτηση αυτή, το πεδίο ορισμού είναι το σύνολο Α = {1, 2, 3, 4, 5, 6, 7}, ενώ το σύνολο τιμών το σύνολο ƒ (Α) = {9o, 11o, 12o, 13o, 15o} ⊆ Β Με αφορμή το παράδειγμα αυτό τονίζουμε τα ακόλουθα χαρακτηριστικά μιας συνάρτησης .
ΠΑΡΑΔΕΙΓΜΑ 2o Θεωρούμε τα σύνολα Α = {α, β, γ} και Β = {1, 2, 3, 4, 5}, καθώς επίσης και τα παρακάτω σχήματα (βελοδιαγράμματα). Παρατηρούμε ότι:
|
Συντομογραφία συνάρτησης Είδαμε παραπάνω ότι, για να οριστεί μια συνάρτηση ƒ, πρέπει να δοθούν τρία στοιχεία:
Οι συναρτήσεις, με τις οποίες θα ασχοληθούμε στο βιβλίο αυτό, είναι της μορφής , όπου Α ⊆ ℝ και Β ⊆ ℝ , είναι δηλαδή, όπως λέμε, πραγματικές συναρτήσεις μιας πραγματικής μεταβλητής. Πολλές φορές αναφερόμαστε σε μια συνάρτηση ƒ δίνοντας μόνον τον τύπο με τον οποίο εκφράζεται το ƒ(x) . Λέμε π.χ. δίνεται «η συνάρτηση ƒ, με f(x) = $\sqrt{1-4x}$» ή, πιο σύντομα, «η συνάρτηση f(x) = $\sqrt{1-4x}$ » ή, ακόμα, «η συνάρτηση y = $\sqrt{1-4x}$». Σε μια τέτοια περίπτωση θα θεωρούμε συμβατικά ότι:
Έτσι για τη συνάρτηση f(x) = $\sqrt{1-4x}$ το πεδίο ορισμού είναι το σύνολο $A = \left(- \infty, \dfrac{1}{4}\right]$, αφού πρέπει 1 - 4x ≥ 0, ενώ το σύνολο Β είναι όλο το ℝ . ΣΗΜΕΙΩΣΗ Πολλές φορές μια συνάρτηση περιγράφεται με έναν τύπο που έχει κλάδους, όπως για παράδειγμα η συνάρτηση: $f(x) = \begin{cases} x^2 + 1 , & \text{αν x<0} \\ x - 1, & \text{αν x ≥ 0} \end{cases}$ Για να υπολογίσουμε τις τιμές της ƒ στα σημεία -1, 0 και 1 εργαζόμαστε ως εξής:
ƒ(-1) = (-1)2 + 1 = 1 + 1 = 2.
ƒ(0) = 0 - 1 = -1.
ƒ(1) = 1 - 1 = 0. ΣΧΟΛΙΟ Αν και, γενικά, χρησιμοποιούμε το γράμμα f για τα συμβολισμό μιας συνάρτησης και το γράμμα χ για το συμβολισμό του τυχαίου στοιχείου του πεδίου ορισμού της, ωστόσο μπορούμε να χρησιμοποιήσουμε και άλλα γράμματα. Έτσι για παράδειγμα οι ƒ(x) = x2 - 4x + 7, g(t) = t2 - 4t + 7 και h(s) = s2 - 4s + 7 ορίζουν την ίδια συνάρτηση. Επομένως το x στον τύπο μιας συνάρτησης θα παίζει το ρόλο μιας «άδειας θέσης». Με αυτό το σκεπτικό, η παραπάνω συνάρτηση θα μπορούσε να έχει τη μορφή ƒ( ) = ( )2 - 4 ( ) + 7, όπου οι παρενθέσεις έχουν πάρει τη θέση ενός γράμματος. Έτσι για να υπολογίσουμε το ƒ(-2) απλά τοποθετούμε το -2 στις θέσεις, που ορίζουν οι παρενθέσεις: ƒ(-2) = (-2)2 - 4(-2) + 7 = 4 + 8 + 7 = 19 Ομοίως, έχουμε ƒ(3x) = (3x)2 - 4(3x) + 7 = 9x2 - 12x + 7 Υπάρχει όμως και μια παραπέρα απλοποίηση των εκφράσεών μας που σχετίζονται με συναρτήσεις. Πολλές φορές αντί να λέμε «η συνάρτηση $s = \dfrac{1}{2}gt^2$», θα λέμε «η συνάρτηση $s = \dfrac{1}{2}gt^2$», δηλαδή γράφουμε s υπονοώντας το s(t). Αυτή η απλοποίηση γίνεται συχνότατα σε διάφορες επιστήμες, που χρησιμοποιούν τη μαθηματική γλώσσα και τα μαθηματικά εργαλεία, όπως η φυσική, η χημεία κτλ. Συνήθως στις περιπτώσεις αυτές υπάρχει κάποιο πείραμα, όπου το t είναι η τιμή ενός μεγέθους, πουυπεισέρχεται στο πείραμα, και το s(t) η αντίστοιχη τιμή κάποιου άλλου μεγέθους. |
ΕΦΑΡΜΟΓΗ Να βρεθεί το πεδίο ορισμού της συνάρτησης $f(x) = \dfrac{1}{x-2} + \sqrt{x-1}$. ΛΥΣΗ Η συνάρτηση ƒ ορίζεται για εκείνα μόνο τα x για τα οποία ισχύει x - 2 ≠ 0 και x - 1 ≥ 0 ή, ισοδύναμα, για x ≠ 2 και x ≥ 1 Άρα το πεδίο ορισμού της ƒ είναι το σύνολο Α = [1,2) $\cup$ (2, +∞) (Σχήμα)
|
|
6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Καρτεσιανές συντεταγμένες Η παράσταση ενός σημείου του επιπέδου με ένα διατεταγμένο ζεύγος πραγματικών αριθμών, βοήθησε στην επίλυση γεωμετρικών προβλημάτων με αλγεβρικές μεθόδους. Η παράσταση αυτή, όπως μάθαμε σε προηγούμενες τάξεις, γίνεται ως εξής: Πάνω σε ένα επίπεδο σχεδιάζουμε δύο κάθετους άξονες x'x και y'y με κοινή αρχή ένα σημείο Ο. Από αυτούς ο οριζόντιος x'x λέγεται άξονας των τετμημένων ή άξονας των x, ενώ ο κατακόρυφος y'y άξονας των τεταγμένων ή άξονας των y. Όπως είναι γνωστό, σε κάθε σημείο Μ του επιπέδου των αξόνων μπορούμε να αντιστοιχίσουμε ένα διατεταγμένο ζεύγος (α, β) πραγματικών αριθμών και αντιστρόφως, σε κάθε διατεταγμένο ζεύγος (α, β) πραγματικών αριθμών, μπορούμε να αντιστοιχίσουμε ένα μοναδικό σημείο Μ του επιπέδου, όπως φαίνεται στο σχήμα: Οι αριθμοί α, β λέγονται συντεταγμένες του Μ. Ειδικότερα ο α λέγεται τετμημένη και ο β τεταγμένη του σημείου Μ. Το σημείο Μ που έχει συντεταγμένες α και β συμβολίζεται με Μ(α, β) ή, απλά, με (α, β). Επειδή η ιδέα της χρησιμοποίησης ζευγών για την παράσταση σημείων του επιπέδου ανήκει στον Καρτέσιο, το παραπάνω ζεύγος των αξόνων το λέμε καρτεσιανό σύστημα συντεταγμένων στο επίπεδο και το συμβολίζουμε Οxy , ενώ το επίπεδο στο οποίο ορίστηκε το σύστημα αυτό το λέμε καρτεσιανό επίπεδο. Αν επιπλέον οι μονάδες των αξόνων έχουν το ίδιο μήκος, το σύστημα Οxy λέγεται ορθοκανονικό. ΣΗΜΕΙΩΣΗ Στα επόμενα, εκτός αν αναφέρεται διαφορετικά, όταν λέμε καρτεσιανό σύστημα συντεταγμένων, θα εννοούμε ορθοκανονικό καρτεσιανό σύστημα συντεταγμένων. Ας θεωρήσουμε τώρα ένα σύστημα Oxy συντεταγμένων στο επίπεδο. Τότε:
Απόσταση σημείων Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και Α(x1,y1) και Β(x2,y2) δύο σημεία αυτού. Θα δείξουμε ότι η απόστασή τους δίνεται από τον τύπο:
ΑΠΟΔΕΙΞΗ
Ο παραπάνω τύπος ισχύει και στην περίπτωση που η ΑΒ είναι παράλληλη με τον άξονα x'x (Σχήμα γ') ή παράλληλη με τον άξονα y'y (Σχήμα δ'). (Σχήμα γ') (Σχήμα δ') Για παράδειγμα, αν Α(3,1), Β(3,5) και Γ (-1,1) είναι οι κορυφές ενός τριγώνου ΑΒΓ, τότε θα είναι: $(AB) = \sqrt{(3-3)^2 + (5-1)^2} = \sqrt{4^2} = 4$ Αφού, λοιπόν, είναι (ΑΒ) = (ΑΓ), το τρίγωνο ΑΒΓ είναι ισοσκελές και επειδή επιπλέον ισχύει (ΑΒ)2 + (ΑΓ)2 = 32 = (ΒΓ)2, το τρίγωνο ΑΒΓ είναι και ορθογώνιο . |
ΕΦΑΡΜΟΓΗ
$(OM) = ρ ⇔ \sqrt{x^2 + y^2} = ρ ⇔ x^2 + y^2 = ρ^2$ Επομένως το σημείο Μ (x,y) ανήκει στο κύκλο C (Ο,ρ), αν και μόνο αν οι συντεταγμένες του ικανοποιούν την εξίσωση $ x^2 + y^2 = ρ^2$ (1) Η εξίσωση (1), που ικανοποιείται από τις συντεταγμένες των σημείων του κύκλου C (Ο, ρ) και μόνο από αυτές, λέγεται εξίσωση του κύκλου με κέντρο Ο και ακτίνα ρ. Για παράδειγμα, η εξίσωση του κύκλου με κέντρο Ο και ακτίνα ρ = 1 είναι η x2 + y2 = 1. Ο κύκλος αυτός λέγεται και μοναδιαίος κύκλος. |
Γραφική παρασταση συνάρτησης Έστω ƒ μια συνάρτηση με πεδίο ορισμού Α και Oxy ένα σύστημα συντεταγμένων στο επίπεδο. Το σύνολο των σημείων M (x, y) για τα οποία ισχύει y = ƒ(x), δηλαδή το σύνολο των σημείων M (x, ƒ(x)), x$\in$A, λέγεται γραφική παράσταση της ƒ και συμβολίζεται συνήθως με Cƒ . Η εξίσωση, λοιπόν, y = ƒ(x) επαληθεύεται από τα σημεία της Cƒ και μόνο από αυτά. Επομένως, η y = ƒ(x) είναι η εξίσωση της γραφικής παράστασης της ƒ. Για το λόγο αυτό, τη γραφική παράσταση Cƒ της ƒ τη συμβολίζουμε, πολλές φορές, απλά με την εξίσωσή της, δηλαδή με y = ƒ(x). Επειδή κάθε x$\in$ A αντιστοιχίζεται σε ένα μόνο y$\in$ℝ , δεν υπάρχουν σημεία της γραφικής παράστασης της ƒ με την ίδια τετμημένη. Αυτό σημαίνει ότι κάθε κατακόρυφη ευθεία έχει με τη γραφική παράσταση της ƒ το πολύ ένα κοινό σημείο (Σχ. α'). Έτσι, ο κύκλος δεν αποτελεί γραφική παράσταση συνάρτησης (Σχ. β').
|
ΕΦΑΡΜΟΓΗ
ΛΥΣΗ i) Είναι: ƒ(-3) = 2, ƒ(-2) = 0, ƒ(-1) = -1, ƒ(0 ) = -1, ƒ(1) = 0 και ƒ(2) = 2. ii) Οι ρίζες της εξίσωσης ƒ(x) = 0 είναι οι τετμημένες των κοινών σημείων της γραφικής παράστασης της f και του άξονα x'x, δηλαδή οι αριθμοί x1 = -2 και x2 = 1. Οι ρίζες της εξίσωσης ƒ(x) = 2 είναι οι τετμημένες των σημείων της γραφικής παράστασης της ƒ που έχουν τεταγμένη 2, δηλαδή οι αριθμοί x1 = -3 και x2 = 2 . Οι ρίζες της εξίσωσης ƒ(x) = g(x) είναι οι τετμημένες των κοινών σημείων των γραφικών παραστάσεων των συναρτήσεων ƒ και g , δηλαδή οι αριθμοί x1 = -1, x2 = 0 και x3 = 2 . iii) Οι λύσεις της ανίσωσης ƒ(x) > 0 είναι οι τετμημένες των σημείων της γραφικής παράστασης της ƒ που βρίσκονται πάνω από τον άξονα x'x, δηλαδή όλα τα x$\in$(-∞, -2) $\cup$ (1, +∞). Οι λύσεις της ανίσωσης ƒ(x) > g(x) είναι οι τετμημένες των σημείων της γραφικής παράστασης της ƒ που βρίσκονται πάνω από τη γραφική παράσταση της g , δηλαδή όλα τα x$\in$(-∞, -1) $\cup$ (0,2). |
|
Συντελεστής διεύθυνσης ευθείας Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα x'x στο σημείο Α. Τη γωνία ω που διαγράφει η ημιευθεία Αx , όταν στραφεί γύρω από το Α κατά τη θετική φορά(1) μέχρι να πέσει πάνω στην ευθεία ε, τη λέμε γωνία που σχηματίζει η ε με τον άξονα x'x . Αν η ευθεία ε είναι παράλληλη προς τον άξονα x 'x ή συμπίπτει με αυτόν, τότε λέμε ότι η ευθεία ε σχηματίζει με τον άξονα x 'x γωνία ω = 0°. Σε κάθε περίπτωση για τη γωνία ω ισχύει 0° ≤ ω <180°. Ως συντελεστή διεύθυνσης ή ως κλίση μιας ευθείας ε ορίζουμε την εφαπτομένη της γωνίας ω που σχηματίζει η ε με τον άξονα x'x. Ο συντελεστής διεύθυνσης μιας ευθείας ε συμβολίζεται συνήθως με λε. ή απλά με λ. Είναι φανερό ότι ο συντελεστής διεύθυνσης της ευθείας ε είναι θετικός, αν η γωνία ω είναι οξεία, αρνητικός, αν η γωνία ω είναι αμβλεία και μηδέν, αν η γωνία ω είναι μηδέν. Στην περίπτωση που η γωνία ω είναι ίση με 90°, δηλαδή όταν η ευθεία ε είναι κάθετη στον άξονα x'x, δεν ορίζουμε συντελεστή διεύθυνσης για την ε. (1) Ως θετική φορά περιστροφής εννοούμε τη φορά κατά την οποία πρέπει να περιστραφεί ο ημιάξονας Οx για να συμπέσει με τον ημιάξονα Oy, αφού προηγουμένως διαγράψει γωνία 90° Γραφική παράσταση της συνάρτησης ƒ(x) = αx + β Ας θεωρήσουμε τη συνάρτηση ƒ(x) = 0,5x + 1. Όπως πρακτικά διαπιστώσαμε στο Γυμνάσιο, η γραφική παράσταση της ƒ είναι ευθεία γραμμή με εξίσωση y = 0,5x + 1 (Σχήμα). Η ευθεία αυτή:
$λ = εφω = \dfrac{(OB)}{(OA)} = \dfrac{1}{2} = 0,5.$ Παρατηρούμε, δηλαδή, ότι η κλίση λ της ευθείας y = 0,5x + 1 είναι ίση με το συντελεστή του x. Γενικά, όπως θα αποδείξουμε στην Β' Λυκείου, η γραφική παράσταση της συνάρτησης ƒ(x) = αx + β είναι μία ευθεία, με εξίσωση y = αx + β, η οποία τέμνει τον άξονα των y στο σημείο Β(0,β) και έχει κλίση λ = α . Είναι φανερό ότι:
Στην περίπτωση που είναι α = 0 , η συνάρτηση παίρνει την μορφή ƒ(x) = β και λέγεται σταθερή συνάρτηση, διότι η τιμή της είναι η ίδια για κάθε x$\in$ℝ. Ας θεωρήσουμε τώρα δύο τυχαία σημεία A(x1,y1) και B(x2,y2) της ευθείας y = α - x + β . Τότε θα ισχύει: y1 = αx1 + β και y2 = αx2 + β, οπότε θα έχουμε: y2 - y1 = (αx2 + β) - (αx1 + β) = α(x2 - x1). Επομένως θα είναι:
Για παράδειγμα, η ευθεία που διέρχεται από τα σημεία A(-1,3) και B(3,6) έχει κλίση $α = \dfrac{6-3}{3-(-1)} = 0,75$. Επομένως, η ευθεία αυτή σχηματίζει με τον άξονα x'x γωνία ω με εφω = 0,75, οπότε θα είναι ω $\simeq$ 36,87°. |
Η συνάρτηση ƒ(x) = αx Αν β = 0, τότε η ƒ παίρνει τη μορφή ƒ(x) = αx , οπότε η γραφική της παράσταση είναι η ευθεία y = αx και περνάει από την αρχή των αξόνων. Ειδικότερα:
|
Σχετικές θέσεις δύο ευθειών Ας θεωρήσουμε δύο ευθείες ε1 και ε2 με εξισώσεις y = α1x + β1 και y = α2x + β2 αντιστοίχως και ας υποθέσουμε ότι οι ευθείες αυτές σχηματίζουν με τον άξονα x'x γωνίες ω1 και ω2 αντιστοίχως.
Σύμφωνα με τα παραπάνω συμπεράσματα:
|
Η συνάρτηση ƒ(x) = |x| Σύμφωνα με τον ορισμό της απόλυτης τιμής έχουμε:
|
ΕΦΑΡΜΟΓΗ
ΛΥΣΗ
Για να δείξουμε τώρα ότι το σημείο Γ ανήκει στην ευθεία ΑΒ, αρκεί να δείξουμε ότι το ζεύγος (-2,2) των συντεταγμένων του επαληθεύει την εξίσωση αυτής, δηλαδή αρκεί να δείξουμε ότι 2 = -0,5 · (-2) + 1, που ισχύει. ii) Οι λύσεις της ανίσωσης ƒ(x) > -0,5 · x + 1 είναι οι τετμημένες των σημείων της γραφικής παράστασης της ƒ που βρίσκονται πάνω από την ευθεία με εξίσωση y = -0,5 · x + 1, δηλαδή πάνω από την ευθεία ΑΒ. Επομένως, η ανίσωση αυτή αληθεύει για x$\in$(-2,0) $\cup $ (2, +∞). |
|
6.4 ΚΑΤΑΚΟΡΥΦΗ - ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Κατακόρυφη μετατόπιση καμπύλης α) Ας θεωρήσουμε τη συνάρτηση ƒ(x) = |x| + 1. Επειδή
Επομένως, αν μετατοπίσουμε τη γραφική παράσταση της φ(x) = |x| κατακόρυφα(1) και προς τα πάνω κατά 1 μονάδα, τότε αυτή θα συμπέσει με τη γραφική παράσταση της ƒ(x) = |x| +1. Αυτό, άλλωστε, ήταν αναμενόμενο, αφού ισχύει: ƒ(x) = φ(x) + 1, για κάθε x$\in$ℝ, που σημαίνει ότι για κάθε x$\in$ℝ το ƒ(x) είναι κατά 1 μονάδα μεγαλύτερο του φ(x). Γενικά:
(1) Δηλαδή παράλληλα με τον άξονα y'y β) Ας θεωρήσουμε τη συνάρτηση ƒ(x) = |x| - 1. Επειδή
Επομένως, αν μετατοπίσουμε τη γραφική παράσταση της φ(x) = |x| κατακόρυφα και προς τα κάτω κατά 1 μονάδα, τότε αυτή θα συμπέσει με τη γραφική παράσταση της ƒ(x) = |x| - 1. Αυτό, άλλωστε, ήταν αναμενόμενο, αφού ισχύει : ƒ(x) = φ(x) - 1, για κάθε x$\in$ℝ, που σημαίνει ότι για κάθε x$\in$ℝ το ƒ(x) είναι κατά 1 μονάδα μικρότερο του φ(x). Γενικά:
|
Οριζόντια μετατόπιση καμπύλης α) Ας θεωρήσουμε τη συνάρτηση ƒ(x) = |x - 1|. Επειδή
Επομένως, αν μετατοπίσουμε τη γραφική παράσταση της φ(x) = |x| οριζόντια(2) και προς τα δεξιά κατά 1 μονάδα, τότε αυτή θα συμπέσει με τη γραφική παράσταση της ƒ(x) = |x -1|. Αυτό, άλλωστε, ήταν αναμενόμενο, αφού ισχύει ƒ(x) = φ(x - 1) , για κάθε x$\in$ℝ σημαίνει ότι η τιμή της ƒ(x) = |x -1| στη θέση x είναι ίδια με την τιμή της φ(x) = |x| στη θέση x - 1. Γενικά:
(2) Δηλαδή παράλληλα με τον άξονα x'x . Πράγματι επειδή ƒ(x) = φ(x - c), η τιμή της ƒ στη θέση x είναι ίδια με την τιμή της φ στη θέση x - c, που βρίσκεται c μονάδες αριστερότερα της θέσης x. Άρα, η γραφική παράσταση της ƒ θα βρίσκεται c μονάδες δεξιότερα της γραφικής παράστασης της φ (Σχήμα γ'). β) Ας θεωρήσουμε τη συνάρτηση ƒ(x) = |x + 1| . Επειδή $f(x) = \begin{cases} -x-1 , & \text{αν x<-1} \\ x + 1, & \text{αν x ≥ -1} \end{cases}$
Επομένως, αν μετατοπίσουμε τη γραφική παράσταση της φ(x) = |x| οριζόντια και προς τα αριστερά κατά 1 μονάδα, τότε αυτή θα συμπέσει με τη γραφική παράσταση της ƒ(x) = |x + 1|. Αυτό, άλλωστε, ήταν αναμενόμενο, αφού ισχύει ƒ(x) = φ(x + 1) , για κάθε x$\in$ℝ , που σημαίνει ότι η τιμή της ƒ(x) = |x + 1| στη θέση x είναι ίδια με την τιμή της φ(x) = |x| στη θέση x + 1. Γενικά:
Πράγματι• επειδή ƒ(x) = φ(x + c), η τιμή της ƒ στη θέση x είναι ίδια με την τιμή της φ στη θέση x + c, που βρίσκεται c μονάδες δεξιότερα της θέσης x. Άρα, η γραφική παράστα-ση της ƒ θα βρίσκεται c μονάδες αριστερότερα της γραφικής παράστασης της φ (Σχήμα δ'). |
ΕΦΑΡΜΟΓΗ Να παραστεί γραφικά η συνάρτηση ƒ(x) = |x + 3| + 2: ΛΥΣΗ Αρχικά χαράσσουμε την y = |x + 3|, που όπως είδαμε προκύπτει από μια οριζόντια μετατόπιση της y = |x| κατά 3 μονάδες προς τα αριστερά. Στη συνέχεια χαράσσουμε την y = |x + 3| + 2,που όπως είδαμε προκύπτει από μια κατακόρυφη μετατόπιση της γραφικής παράστασης της y = |x + 3| κατά 2 μονάδες προς τα πάνω.
ΣΗΜΕΙΩΣΗ Με ανάλογο τρόπο, δουλεύουμε για να παραστήσουμε γραφικά τις συναρτήσεις της μορφής: ƒ(x) = φ(x ± c) ± d, με c, d > 0 Δηλαδή, αξιοποιούμε τόσο την οριζόντια όσο και την κατακόρυφη μετατόπιση καμπύλης. |
|
6.5 ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ Μονοτονιά συνάρτησης Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης T = ƒ(t) που εκφράζει τη θερμοκρασία Τ ενός τόπου συναρτήσει του χρόνου t κατά το χρονικό διάστημα από τα μεσάνυχτα μιας ημέρας (t = 0) μέχρι τα μεσάνυχτα της επόμενης μέρας (t = 24). α) Παρατηρούμε ότι στο διάστημα [4,16] η γραφική παράσταση της θερμοκρασίας ανέρχεται. Αυτό σημαίνει ότι στο διάστημα αυτό, με την πάροδο του χρόνου, η θερμοκρασία αυξάνεται, δηλαδή για οποιαδήποτε t1, t2 $\in$[4,16] με t1 < t2 ισχύει: ƒ(t1) < ƒ(t2) Για το λόγο αυτό λέμε ότι η συνάρτηση T = ƒ(t) είναι γνησίως αύξουσα στο διάστημα [4,16]. Γενικά: ΟΡΙΣΜΟΣ
Για να δηλώσουμε ότι η συνάρτηση ƒ είναι γνησίως αύξουσα στο διάστημα Δ γράφουμε . Για παράδειγμα, η συνάρτηση ƒ(x) = 2x - 3 είναι γνησίως αύξουσα στο ℝ . Πράγματι έστω x1,x2ℝ, με x1 < x2. Τότε έχουμε: Γενικά: Η συνάρτηση ƒ(x) = αx + β, με α > 0 είναι γνησίως αύξουσα στο ℝ. β) Στο ίδιο σχήμα, παρατηρούμε επιπλέον ότι στο διάστημα [16,24] η γραφική παράσταση της θερμοκρασίας κατέρχεται. Αυτό σημαίνει ότι στο διάστημα αυτό, με την πάροδο του χρόνου, η θερμοκρασία μειώνεται, δηλαδή για οποιαδήποτε t1, t2$\in$[16,24] με t1 < t2 ισχύει: ƒ(t1) > ƒ(t2) Για το λόγο αυτό λέμε ότι η συνάρτηση T = ƒ(t) είναι γνησίως φθίνουσα στο διάστημα [16,24]. Γενικά: ΟΡΙΣΜΟΣ
Για να δηλώσουμε ότι η συνάρτηση είναι γνησίως φθίνουσα στο διάστημα Δ γράφουμε
Για παράδειγμα, η συνάρτηση ƒ(x) = -2x + 5 είναι γνησίως φθίνουσα στο ℝ. Πράγματι• έστω x1, x2ℝ, με x1 < x2. Τότε έχουμε: Γενικά: Η συνάρτηση ƒ(x) = αx + β, με α < 0 είναι γνησίως φθίνουσα στο ℝ. Μια συνάρτηση που είναι είτε γνησίως αύξουσα είτε γνησίως φθίνουσα σε ένα διάστημα Δ λέγεται γνησίως μονότονη στο Δ. |
Ελάχιστο και μέγιστο συνάρτησης Ας θεωρήσουμε και πάλι τη γραφική παράσταση της συνάρτησης T = ƒ(t) . Παρατηρούμε ότι: α) Τη χρονική στιγμή t1 = 4 η θερμοκρασία του τόπου παίρνει την ελάχιστη τιμή της, που είναι η ƒ(4) = 3 βαθμοί Κελσίου. Δηλαδή ισχύει: ƒ(t) ≥ ƒ(4) = 3 , για κάθε t[0,24] Για το λόγο αυτό λέμε ότι η συνάρτηση T = ƒ(t) παρουσιάζει στο t = 4 ελάχιστο, το ƒ(4) = 3. Γενικά: ΟΡΙΣΜΟΣ
Το x0$\in$Α λέγεται θέση ελαχίστου, ενώ το ƒ(x0) ολικό ελάχιστο ή απλώς ελάχιστο της συνάρτησης ƒ και το συμβολίζουμε με min ƒ(x). Για παράδειγμα, ας θεωρήσουμε τη συνάρτηση $ƒ(x) = 3x^4 + 1$. Επειδή x4 ≥ 0, για κάθε x$\in$ℝ, θα είναι 3x4 ≥ 0, για κάθε x$\in$ℝ , οπότε θα έχουμε 3x4 + 1 ≥ 1, για κάθε x$\in$ℝ. Επομένως: ƒ(x) ≥ ƒ(0), για κάθε x$\in$ℝ Άρα, η ƒ παρουσιάζει ελάχιστο στο x0 = 0 , το ƒ(0) = 1 β) Τη χρονική στιγμή t2 = 16 η θερμοκρασία του τόπου παίρνει τη μέγιστη τιμή της, που είναι η T(16) = 11 βαθμοί Κελσίου. Δηλαδή ισχύει: ƒ(t) ≤ ƒ(16) = 11, για κάθε t$\in$[0,24] Για το λόγο αυτό λέμε ότι η συνάρτηση T = ƒ(t) παρουσιάζει στο t = 16 μέγιστο, το ƒ(16) = 11. Γενικά: ΟΡΙΣΜΟΣ
Το x0Α λέγεται θέση μεγίστου, ενώ το ƒ(x0) ολικό μέγιστο ή απλώς μέγιστο της ƒ και το συμβολίζουμε με max ƒ(x) . Για παράδειγμα, ας θεωρήσουμε τη συνάρτηση ƒ(x) = -3x4 + 1. Επειδή x4 ≥ 0, για κάθε x$\in$ℝ, θα είναι -3x4 ≤ 0 , για κάθε x$\in$ℝ, οπότε θα έχουμε -3x4 + 1 ≤ 1, για κάθε x$\in$ℝ . Επομένως: ƒ(x) ≤ ƒ(0), για κάθε x$\in$ℝ Άρα, η ƒ παρουσιάζει μέγιστο στο x0 = 0 , το ƒ(0) = 1. Το (ολικό) μέγιστο και το (ολικό) ελάχιστο μιας συνάρτησης λέγονται ολικά ακρότατα αυτής. ΣΧΟΛΙΟ Μια συνάρτηση ενδέχεται να έχει και μέγιστο και ελάχιστο (Σχ. α) ή μόνο ελάχιστο (Σχ. β') ή μόνο μέγιστο (Σχ. γ') ή να μην έχει ούτε μέγιστο ούτε ελάχιστο (Σχ. δ'). |
Άρτια συνάρτηση
Επειδή, όμως, το συμμετρικό του τυχαίου σημείου M(x,y) της Cƒ ως προς τον άξονα y'y είναι το σημείο M'(-x,y) και επειδή τα σημεία M(x,y) και M'(-x,y) ανήκουν στην Cƒ , θα ισχύει y = ƒ(x) και y = ƒ(-x), οπότε θα έχουμε: ƒ(-x) = ƒ(x) Η συνάρτηση ƒ με την παραπάνω ιδιότητα λέμε λέγεται άρτια. Γενικά: ΟΡΙΣΜΟΣ
Η γραφική παράσταση μιας άρτιας συνάρτησης έχει άξονα συμμετρίας τον άξονα y 'y Για παράδειγμα, η συνάρτηση ƒ(x) = 2x4 - x2 + 1 είναι άρτια συνάρτηση, αφού έχει πεδίο ορισμού όλο το ℝ και για κάθε x$\in$ℝ ισχύει: ƒ(-x) = 2(-x)4 - (-x)2 + 1 = 2x4 - x2 + 1 = ƒ(x) Συνεπώς, η γραφική της παράσταση έχει άξονα συμμετρίας τον άξονα y'y . |
Περιττή συνάρτηση
Επειδή, όμως, το συμμετρικό του τυχαίου σημείου M(x,y) της Cƒ ως προς την αρχή των αξόνων είναι το σημείο M'(-x, -y) και επειδή τα σημεία M(x,y) και M'(-x, -y) ανήκουν στην Cƒ , θα ισχύει y = ƒ(x) και -y = ƒ(-x), οπότε θα έχουμε: ƒ(-x ) = -ƒ(x) Η συνάρτηση f με την παραπάνω ιδιότητα λέγεται περιττή. Γενικά: ΟΡΙΣΜΟΣ
Η γραφική παράσταση μιας περιττής συνάρτησης έχει κέντρο συμμετρίας την αρχή των αξόνων. Για παράδειγμα, η συνάρτηση ƒ(x) = 2x3 - x είναι περιττή συνάρτηση, διότι έχει πεδίο ορισμού όλο το ℝ και για κάθε x$\in$ℝ ισχύει: ƒ(-x) = 2(-x)3 - (-x) = -2x3 + x = - ƒ(x) Συνεπώς, η γραφική της παράσταση έχει κέντρο συμμετρίας την αρχή των αξόνων. ΣΗΜΕΙΩΣΗ Ο όρος "άρτια" προέκυψε αρχικά από το γεγονός ότι οι συναρτήσεις y = x2, y = x4, y = x6 κτλ., που έχουν άρτιο εκθέτη, έχουν άξονα συμμετρίας τον άξονα y'y, είναι δηλαδή άρτιες συναρτήσεις, ενώ ο όρος "περιττή" προέρχεται από το γεγονός ότι οι συναρτήσεις y = x , y = x3, y = x5 κτλ., που έχουν περιττό εκθέτη, έχουν κέντρο συμμετρίας την αρχή των αξόνων, είναι δηλαδή περιττές συναρτήσεις. |
ΕΦΑΡΜΟΓΗ Στο παρακάτω σχήμα δίνονται ορισμένα τμήματα της γραφικής παράστασης μιας άρτιας συνάρτησης ƒ που έχει πεδίο ορισμού το διάστημα [-6,6]. Να χαραχθούν και τα υπόλοιπα τμήματα της γραφικής παράστασης της συνάρτησης ƒ και με τη βοήθεια αυτής: α) Να βρεθούν τα διαστήματα στα οποία η συνάρτηση ƒ: i) είναι γνησίως αύξουσα, ii) είναι γνησίως φθίνουσα iii) είναι σταθερή. β) Να βρεθεί η μέγιστη και η ελάχιστη τιμή της ƒ, καθώς επίσης οι θέσεις των ακροτάτων αυτών.
ΛΥΣΗ Επειδή η συνάρτηση ƒ είναι άρτια, η γραφική της παράσταση θα έχει άξονα συμμετρίας τον άξονα y'y. Επομένως, αν πάρουμε τα συμμετρικά ως προς τον άξονα y'y των δοθέντων τμημάτων της γραφικής παράστασης της ƒ, θα έχουμε ολόκληρη τη γραφική παράσταση της ƒ, που είναι η πολυγωνική γραμμή Α΄Β΄ΓΌΓΒΑ (Σχήμα). Από την παραπάνω γραφική παράσταση προκύπτει ότι: α) Η συνάρτηση ƒ: i) είναι γνησίως αύξουσα σε καθένα από τα διαστήματα [0,2] και [5,6], ii) είναι γνησίως φθίνουσα σε καθένα από τα διαστήματα [-2,0] και [-6,-5], τα οποία είναι συμμετρικά ως προς το Ο των διαστημάτων [0,2] και [5,6] αντιστοίχως στα οποία η ƒ είναι γνησίως αύξουσα. iii) είναι σταθερή σε καθένα από τα διαστήματα [-5,-2] και [2,5] τα οποία είναι συμμετρικά μεταξύ τους ως προς το Ο. β) Η μέγιστη τιμή της ƒ είναι ίση με 4 και παρουσιάζεται όταν το x πάρει τις τιμές -6 και 6. Δηλαδή ισχύει: max ƒ(x) = ƒ(-6) = ƒ(6) = 4 Η ελάχιστη τιμή της ƒ είναι ίση με 0 και παρουσιάζεται όταν το x πάρει την τιμή 0. Δηλαδή ισχύει: min ƒ(x) = ƒ(0) = 0. |
|
|
ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Η ιδέα της χρησιμοποίησης διατεταγμένων ζευγών για τα σημεία ενός επιπέδου και της περιγραφής καμπύλων με εξισώσεις, ανήκει στον Rene Descartes (1596 - 1650) και στον Pierre de Fermat (1601 - 1665). Ο Descartes (Καρτέσιος) γεννήθηκε στη La Haye (σημερινή Ντερκατ) της Touraine και πέθανε στη Στοκχόλμη. Σε ηλικία 10 χρόνων εγγράφηκε στο Βασιλικό Κολλέγιο της La Fleche, όπου δίδασκαν Ιησουίτες. Από εκείνη τη στιγμή αρχίζει και το ενδιαφέρον του για τα μαθηματικά. Στη ζωή του υπήρξε φιλόσοφος, αλλά ένα μεγάλο μέρος του χρόνου του το διέθετε για τα μαθηματικά. Τα αποτελέσματα και οι μέθοδοί του, που δημοσίευσε το 1637 στο βιβλίο του Le Geometrie, δημιούργησαν ένα νέο κλάδο των μαθηματικών που αργότερα ονομάστηκε Αναλυτική Γεωμετρία. Ο Καρτέσιος διείδε τη δύναμη της Άλγεβρας για τη λύση γεωμετρικών προβλημάτων και η σκέψη του αντιπροσώπευε μια ριζική απόκλιση από την μέχρι τότε επικρατούσα άποψη για τη Γεωμετρία. Ο όρος «Καρτεσιανές συντεταγμένες», οφείλεται στο όνομά του. Ο Fermat, που έζησε στην Toulouse της νότιας Γαλλίας, αν και ήταν νομικός στο επάγγελμα, υπήρξε ένας από τους μεγαλύτερους μαθηματικούς του 17ου αιώνα. Τις ιδέες του για συντεταγμένες στη Γεωμετρία, τυποποίησε στις αρχές του 1629 και τις κυκλοφόρησε με αλληλογραφία, αλλά δεν δημοσιεύτηκαν πριν από το 1679. Ο Fermat συνέδεσε το όνομά του με τον ισχυρισμό: «Για κάθε ν > 2 είναι αδύνατο να βρούμε θετικούς ακέραιους α, β, γ που να ικανοποιούν την σχέση αν = βν + γν ».που είναι γνωστός ως το «τελευταίο θεώρημα του Fermat». Τον ισχυρισμό του αυτόν έγραψε ο Fermat στο περιθώριο ενός βιβλίου του προσθέτοντας και τα εξής: «Έχω βρει μια πραγματικά θαυμάσια απόδειξη την οποία το περιθώριο αυτό είναι πολύ στενό για να χωρέσει».Ο ισχυρισμός αυτός του Fermat αποδείχτηκε αληθής το 1994 από τον Άγγλο μαθηματικό Α. Wiles, αφού υπήρξε για 350 χρόνια ένα από τα διασημότερα άλυτα προβλήματα της Θεωρίας Αριθμών. |