Μαθηματικά (Α' Γυμνασίου) - Βιβλίο Μαθητή
2.2. Άξονας συμμετρίας 2.4. Συμμετρία ως προς σημείο Επιστροφή στην αρχική σελίδα του μαθήματος
Μέρος Β' - Κεφάλαιο 2ο - Συμμετρία
 
Β.2.3. Μεσοκάθετος ευθυγράμμου τμήματος
 
ΔΡΑΣΤΗΡΙΟΤΗΤΑ
Εικόνα

Ο καπετάνιος του πλοίου προσπαθεί να κρατήσει την πορεία του πλοίου το ίδιο μακριά από τις βάσεις Α και Β της γέφυρας, επειδή η στενότητα του περάσματος, ο αέρας και η γνωστή παλίρροια του Ευβοϊκού κόλπου επι¬δρούν στην πορεία των καραβιών και κάνουν τη διέλευση επικίνδυνη. 

Μπορείς να υποδείξεις την πορεία που πρέπει να έχει ένα πλοίο για να περάσει με ασφάλεια το στενό του Ευρίππου;

  • Τι είναι η πορεία του πλοίου σε σχέση με το ευθύγραμμο τμήμα ΑΒ;
  • Τι είναι τα σημεία Α και Β μεταξύ τους σε σχέση με την πορεία του πλοίου;
  • Ποια σημαντική ιδιότητα πρέπει να έχουν τα σημεία της πορείας αυτής;
Εικόνα
Θυμόμαστε - Μαθαίνουμε
Εικόνα
  • Μεσοκάθετος ευθυγράμμου τμήματος λέγεται η ευθεία που είναι κάθετη προς αυτό και διέρχεται από το μέσον του.
  • Κάθε σημείο της μεσοκαθέτου ενός ευθυγράμμου τμήματος έχει ίσες αποστάσεις (ισαπέχει) από τα άκρα του.
  • Κάθε σημείο που ισαπέχει από τα άκρα ενός ευθυγράμμου τμήματος βρίσκεται πάνω στη μεσοκάθετό του.
  • H μεσοκάθετος ενός ευθυγράμμου τμήματος είναι άξονας συμμετρίας του.
 
Εικόνα

Με βάση τους παραπάνω κανόνες ("αιτήματα") μπορούν να γίνουν οι κατασκευές όλων των γεωμετρικών σχημάτων με τη χρήση "του κανόνα και του διαβήτη". ("Κανόνας" είναι ένας χάρακας χωρίς υποδιαιρέσεις για να χαράζουμε ευθείες και όχι για να κάνουμε μετρήσεις μηκών). Οι κατασκευές αυτές απαιτούν μεγαλύτερη επιδεξιότητα και γνώση, δίνουν όμως ακριβέστερα αποτελέσματα και βοηθούν να αποφεύγονται λάθη, που οφείλονται σε ατέλειες των οργάνων που χρησιμοποιούμε στην πράξη.

 
ΠΑΡΑΔΕΙΓΜΑΤΑ - ΕΦΑΡΜΟΓΕΣ

 

 

Εικόνα

 

 

Να σχεδιαστεί η μεσοκάθετος ενός ευθυγράμμου τμήματος ΑΒ, με τη βοήθεια του υποδεκάμετρου και του γνώμονα.
Εικόνα
Εικόνα

 

 

Προσδιορίζουμε το μέσον Μ του ευθυγράμμου τμήματος ΑΒ με το υποδεκάμετρο και στη συνέχεια με το γνώμονα σχεδιάζουμε την ευθεία ε, που διέρχεται από το Μ και είναι κάθετη στο ΑΒ.

Εικόνα
Εικόνα Να σχεδιαστεί η μεσοκάθετος ενός ευθυγράμμου τμήματος ΑΒ, χωρίς τη βοήθεια του υποδεκάμετρου και του γνώμονα, αλλά μόνο με τη χρήση "του κανόνα και του διαβήτη".
Εικόνα

 

 

Γνωρίζουμε ότι η μεσοκάθετος, όπως κάθε ευθεία, ορίζεται από δύο σημεία και ότι κάθε σημείο της μεσοκαθέτου ενός ευθυγράμμου τμήματος ισαπέχει από τα άκρα του.

Για να σχεδιάσουμε τη μεσοκάθετο του ευθυγράμμου τμήματος ΑΒ πρέπει να βρούμε δύο σημεία που να ισαπέχουν από τα Α και Β. Γράφουμε, λοιπόν, δύο ίσους κύκλους με κέντρα τα άκρα Α και Β του ευθυγράμμου τμήματος και με ακτίνα ρ (μεγαλύτερη από το μισό μήκος του ΑΒ, για να τέμνονται).

Τα σημεία Γ και Δ, στα οποία τέμνονται οι δύο κύκλοι ορίζουν την ευθεία που είναι μεσοκάθετος του ευθυγράμμου τμήματος ΑΒ, διότι δύο σημεία της, τα Γ και Δ, απέχουν εξίσου από τα άκρα Α και Β, αφού είναι ΓΑ = ΓΒ = ρ και ΔΑ = ΔΒ = ρ.

Εικόνα
  • Με την κατασκευή της μεσοκαθέτου του ευθυγράμμου τμήματος ΑΒ, βρήκαμε με ακρίβεια και το μέσο Μ, χωρίς να χρησιμοποιήσουμε υποδεκάμετρο
Εικόνα Να κατασκευαστεί ευθεία δ κάθετη σε ευθεία ε στο σημείο της Α.
Εικόνα

 

 
Γράφουμε κύκλο με κέντρο το Α και τυχαία ακτίνα, που τέμνει την ε σε δύο σημεία Γ και Δ. Επειδή το Α είναι μέσο του ΓΔ, αρκεί να φέρουμε τη μεσοκάθετο του ΓΔ που διέρχεται από το μέσο του Α και είναι κάθετη στην ε.

Εικόνα

Εικόνα Να κατασκευαστεί η κάθετη δ μιας ευθείας ε από σημείο Α εκτός αυτής.
Εικόνα

 

 

Γράφουμε κύκλο με κέντρο το Α και ακτίνα τέτοια ώστε να τέμνει την ε σε δύο σημεία Γ και Δ. Επειδή το Α ισαπέχει από τα Γ και Δ, θα είναι σημείο της μεσοκαθέτου του τμήματος ΓΔ. Επομένως, αρκεί να φέρουμε, με τον τρόπο που μάθαμε στην εφαρμογή 2, τη μεσοκάθετο του ΓΔ που διέρχεται από το Α.

Εικόνα

Εικόνα

Να κατασκευαστεί ένα ισόπλευρο τρίγωνο πλευράς α.


Εικόνα

 

 
 
 
Εικόνα

 

 

Γράφουμε ένα ευθύγραμμο τμήμα ΒΓ = α.

Με κέντρα τα άκρα Β και Γ και ακτίνα ίση με α γράφουμε δύο κύκλους. Έστω Α το ένα σημείο από τα δύο που τέμνονται οι κύκλοι αυτοί. Το τρίγωνο ΑΒΓ είναι το ζητούμενο ισόπλευρο, διότι έχει όλες τις πλευρές του ίσες με α, ως ακτίνες ίσων κύκλων ακτίνας α.


ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ
Εικόνα

Εικόνα

Συμπλήρωσε τα παρακάτω κενά:
(α) Κάθε σημείο που ισαπέχει από τα άκρα ευθυγράμμου τμήματος βρίσκεται πάνω στη .................................
(β) Με την κατασκευή της μεσοκαθέτου του ευθυγράμμου τμήματος ΑΒ, βρήκαμε με ακρίβεια και το του, χωρίς να χρησιμοποιήσουμε ................................. υποδεκάμετρο.
(γ) Δύο σημεία Μ και Μ' είναι συμμετρικά ως προς ευθεία ε, όταν η ε είναι ................................. του τμήματος ΜΜ'
Εικόνα Να χαράξεις ένα ευθύγραμμο τμήμα ΑΒ και με τη χρήση του κανόνα και του διαβήτη να το χωρίσεις σε δύο ίσα τμήματα και στη συνέχεια σε τέσσερα ίσα τμήματα.
Εικόνα Σχεδίασε έναν κύκλο και μια ακτίνα του ΚΑ. Βρες δύο σημεία του κύκλου, που το καθένα να ισαπέχει από τα Κ και Α.
Εικόνα
Στο διπλανό σχήμα η καμπύλη γραμμή γ παριστά τμήμα της διαδρομής του αστικού λεωφορείου. Οι κάτοικοι των οικισμών Α και Β αποφάσισαν να κατασκευάσουν μια στάση, που να απέχει εξίσου από τους δύο οικισμούς. Βρες το κατάλληλο σημείο της διαδρομής και δικαιολόγησε τη λύση που θα δώσεις.

Εικόνα

Εικόνα Να βρεις το σημείο της όχθης ενός ποταμού το οποίο ισαπέχει από δύο χωριά Α και Β.
Εικόνα Σχεδίασε ένα τρίγωνο και βρες με ακρίβεια τα μέσα των πλευρών του.
Εικόνα Σχεδίασε έναν κύκλο με κέντρο Κ και μια χορδή του ΑΒ. Να κατασκευάσεις τη μεσοκάθετο της χορδής ΑΒ και να ονομάσεις Μ και Ν τα σημεία στα οποία τέμνει τον κύκλο. (α) Σύγκρινε τις χορδές ΜΑ και ΜΒ και δικαιολόγησε το αποτέλεσμα της σύγκρισης, (β) κάνε το ίδιο και για τις χορδές ΝΑ και ΝΒ, (γ) βρες εάν το κέντρο Κ του κύκλου είναι σημείο της μεσοκαθέτου και δικαιολόγησε την απάντησή σου.
Εικόνα Σχεδίασε τις μεσοκάθετες τριών χορδών ενός κύκλου και εξέτασε αν υπάρχει σημείο στο σχήμα σου, από το οποίο να διέρχονται και οι τρεις μεσοκάθετες.
Εικόνα
Στο διπλανό σχήμα βρες εκείνο το σημείο της ε, που να ισαπέχει από τα σημεία Α και Β.

Εικόνα

 
ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΠΑ ΤΟ ΣΠΙΤΙ
Εικόνα

Σχεδίασε έναν κύκλο με ένα νόμισμα. Πώς μπορείς να βρεις το κέντρο του;

Εικόνα

 
Εικόνα

Τρεις οικογένειες κατασκήνωσαν σ' ένα κάμπινγκ και τοποθέτησαν τις σκηνές τους Σ1, Σ2 και Σ3 έτσι ώστε: 

Σ1Σ2 = 3,8 m, Σ1Σ3 = 2 m και Σ2Σ3 = 3,5 m. Να σχεδιάσεις τη διάταξη των σκηνών σε σχέδιο με κλίμακα 1:100 και να βρεις το σημείο Ν, που πρέπει να τοποθετηθεί ένα ντους, ώστε και οι τρεις σκηνές να απέχουν εξίσου απ' αυτό. Υπάρχουν πολλές τέτοιες θέσεις; Να δικαιολογήσεις την απάντησή σου.