Σχ. 7.11 (α) Η διάταξη αυτή περιορίζει τα ελεύθερα ηλεκτρόνια του αγωγού σ' ένα μήκος L πάνω στον άξονα των x. (β) Το πηγάδι δυναμικού που δημιουργεί η διάταξή μας. Τα ελεύθερα ηλεκτρόνια που βρίσκονται στα όρια του L έχουν δυναμική ενέργεια, U=0 ενώ έξω από τα όρια του L δυναμική ενέργεια U ≠ 0. Για να βγει ένα ηλεκτρόνιο από το πηγάδι πρέπει να έχει κινητική ενέργεια μεγαλύτερη από το βάθος του πηγαδιού U0. Στην πράξη το πηγάδι δυναμικού που δημιουργεί η διάταξή μας έχει στρογγυλεμένα χείλη και τοιχώματα που γέρνουν ελαφρά προς τα έξω.
![]() Σχ. 7.12 |
7-8 ΣΩΜΑΤΙΔΙΟ ΠΑΓΙΔΕΥΜΕΝΟ ΣΕ ΠΗΓΑΔΙ ΔΥΝΑΜΙΚΟΥ
Σωματίδιο παγιδευμένο σε πηγάδι δυναμικού είναι ένα σωματίδιο που λόγω εξωτερικών δυνάμεων είναι παγιδευμένο σε μία περιοχή του χώρου. Αν θεωρήσουμε για παράδειγμα σαν σωμάτιο ένα ηλεκτρόνιο, τέτοιου είδους παγίδες είναι τα άτομα. Η διάταξη του σχήματος 7.11 μας δίνει μια πιο χειροπιαστή εικόνα του τι είναι ένα πηγάδι δυναμικού. Α) ΠΗΓΑΔΙ ΔΥΝΑΜΙΚΟΥ ΑΠΕΙΡΟΥ ΒΑΘΟΥΣ Έστω ότι έχουμε ένα ηλεκτρόνιο που κινείται μόνο κατά τη διεύθυνση των x και είναι παγιδευμένο σ' ένα πηγάδι δυναμικού άπειρου βάθους όπως στο σχήμα 7.12. Αυτό σημαίνει ότι εάν το ηλεκτρόνιο βρίσκεται στο διάστημα 0 ≤ x ≤ L έχει δυναμική ενέργεια U=0 ενώ αν x < 0 ή x > L η δυναμική ενέργεια απειρίζεται. Με τους παραπάνω περιορισμούς η λύση της εξίσωσης (7.6) είναι Ψ(x) = 0 αν x<0 ή x>L και Ψ(x) = Αημ Η Ψ(x) είναι η κυματοσυνάρτηση που περιγράφει το ηλεκτρόνιο μας για κάποια δεδομένη χρονική στιγμή. |
Το μήκος κύματος της ημιτονοειδούς αυτής μορφής μπορεί να πάρει τις τιμές λ = Αν θέσουμε τις τιμές του λ που βρήκαμε στη σχέση p=h/λ προκύπτει
Βλέπουμε ότι η ορμή του ηλεκτρονίου δεν μπορεί να πάρει οποιαδήποτε τιμή αλλά τιμές που είναι ακέραια πολλαπλάσια της ποσότητας h/2L. Δηλαδή η ορμή είναι κβαντισμένη. Κάτι αντίστοιχο συμβαίνει και με την ενέργεια του ηλεκτρονίου που μπορεί να είναι μόνο κινητική. E=K =
Η ενέργεια του ηλεκτρονίου μας είναι υποχρεωτικά κβαντισμένη. Ας δούμε τώρα αν μπορούμε να εντοπίσουμε τη θέση του ηλεκτρονίου. Είδαμε ότι, σύμφωνα με την παραδοχή του Born, το τετράγωνο του μέτρου της κυματοσυνάρτησης είναι η πιθανότητα θέσης ανά μονάδα όγκου. Στο πρόβλημα που μελετάμε το ηλεκτρόνιο κινείται μόνο στη διεύθυνση του άξονα των x. Άρα το |Ψ(x)|2 θα είναι η πιθανότητα θέσης ανά μονάδα μήκους για τη δεδομένη στιγμή που εξετάζουμε. Σχ. 7.13 (α) Γραφικές παραστάσεις της Ψ(x) για τους τρεις πρώτους κβαντικούς αριθμούς .(β) Οι αντίστοιχες παραστάσεις για το |Ψ(x)|2. Η τιμή του |Ψ(x)|2 για κάθε σημείο δείχνει την πιθανότητα να βρεθεί το ηλεκτρόνιο σ' ένα στοιχειώδες dx γύρω από το σημείο αυτό. (γ) Οι αντίστοιχες ενεργειακές στάθμες του ηλεκτρονίου. Η απόσταση ανάμεσα σε δύο διαδοχικές στάθμες δεν είναι σταθερή, μεγαλώνει όσο αυξάνει το n |
Σχ. 7.16 (α) Γραφικές παραστάσεις της Ψ (x) για τους τρεις πρώτους κβαντικούς αριθμούς, (β) Οι αντίστοιχες ενεργειακές στάθμες ταυ ηλεκτρονίου, (γ) Οι αντίστοιχες παραστάσεις για το |Ψ(x)|2 . Η τιμή του |Ψ(x)|2 για κάθε σημείο δείχνει την πιθανότητα να βρεθεί το ηλεκτρόνιο σ' ένα στοιχειώδες dx γύρω από το σημείο αυτό. Βλέπουμε ότι οι καμπύλες εκτείνονται και έξω από τα όρια του πηγαδιού.
|
|