Φυσική Θετικών Σπουδών & Σπουδών Υγείας Γ΄ τάξη Γενικού Λυκείου (ΤΕΥΧΟΣ Γ΄)
6-13 Η ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

Στην ειδική θεωρία της σχετικότητας ασχοληθήκαμε αποκλειστικά με την παρατήρηση των φαινομένων από αδρανειακά συστήματα αναφοράς. Όμως αδρανειακά συστήματα αναφοράς με την αυστηρή έννοια του όρου, δηλαδή συστήματα στα οποία δεν ασκείται καμία δύναμη, με αποτέλεσμα, αν κινούνται να κινούνται ευθύγραμμα ομαλά, δεν υπάρχουν. Ένα συνηθισμένο σύστημα που θεωρούμε αδρανειακό είναι η Γη. Η Γη όμως επιταχύνεται, αφού περιστρέφεται γύρω από τον Ήλιο υπό την επίδραση βαρυτικών δυνάμεων. Το ίδιο συμβαίνει και με τον Ήλιο και με το γαλαξία μας. Προκύπτει λοιπόν η ανάγκη να επεκτείνουμε τα συμπεράσματά μας και σε επιταχυνόμενα συστήματα αναφοράς. Να προσαρμόσουμε δηλαδή τις θεωρίες μας ώστε να ισχύουν οι δυο βασικές παραδοχές της σχετικότητας που αναφέρθηκαν στην αρχή του κεφαλαίου και στα επιταχυνόμενα συστήματα αναφοράς. Αυτό είναι το αντικείμενο της γενικής θεωρίας της σχετικότητας.

Η ηλεκτρομαγνητική θεωρία, που στηρίζεται στις εξισώσεις του Maxwell, δεν παρουσιάζει προβλήματα, είναι συμβατή με τις παραδοχές της σχετικότητας. Εκεί που υπάρχουν προβλήματα είναι η θεωρία του βαρυτικού πεδίου του Newton. Για παράδειγμα σύμφωνα με τη θεωρία του Newton οι

βαρυτικές αλληλεπιδράσεις διαδίδονται ακαριαία στο χώρο. Όμως σύμφωνα με τη θεωρία της σχετικότητας τίποτε δε μπορεί να διαδοθεί με ταχύτητα μεγαλύτερη της ταχύτητας του φωτός.

Η γενική θεωρία της σχετικότητας στηρίζεται στην ισοδυναμία της βαρυτικής και της αδρανειακής μάζας.

Έχουμε συναντήσει τη μάζα με δυο όψεις. Τη μάζα δημιουργό και υπόθεμα βαρυτικού πεδίου ( FB = Εικόνα ) και τη μάζα μέτρο της αδράνειας ενός σώματος  (F = mα).Οι δυο αυτές μάζες είναι ισοδύναμες μεταξύ τους. Η κεντρική ιδέα του Einstein στη γενική θεωρία της σχετικότητας είναι ότι μπορούμε να μελετήσουμε ένα επιταχυνόμενο σύστημα αναφοράς αγνοώντας ότι επιταχύνεται και υποθέτοντας ότι βρίσκεται σ' ένα βαρυτικό πεδίο και αντίστροφα να μελετήσουμε ένα σύστημα που βρίσκεται μέσα σ' ένα βαρυτικό πεδίο αγνοώντας το βαρυτικό πεδίο και υποθέτοντας ότι επιταχύνεται. Όλα αυτά είναι λίγο ασαφή. Ας δούμε το παρακάτω νοητικό πείραμα:

Ένας άνθρωπος βρίσκεται μέσα σ' ένα διαστημόπλοιο χωρίς παράθυρα. Το διαστημόπλοιο κινείται ισοταχώς μακριά από οποιοδήποτε πεδίο βαρύτητας. Ο άνθρωπος και τα αντικείμενα που βρίσκονται ελεύθερα μέσα στο διαστημόπλοιο δε δέχονται καμία δύναμη, άρα αιωρούνται μέσα σ' αυτό (σχ. 6.16α).

Έστω τώρα ότι το διαστημόπλοιο επιταχύνεται με επιτάχυνση α. Ο άνθρωπος «κολλάει» στο δάπεδο και τα αντικείμενα που αιωρούνται γύρω του πέφτουν, σαν να απέκτησαν ξαφνικά βάρος (σχ. 6.16β). Εάν ο άνθρωπος αγνοεί ότι το διαστημόπλοιο επιταχύνθηκε το πρώτο πράγμα που θα σκεφθεί είναι ότι το διαστημόπλοιο μπήκε σε μια περιοχή όπου υπάρχει πεδίο βαρύτητας. Με απλά πειράματα μάλιστα μπορεί να υπολογίσει την ένταση αυτού του πεδίου βαρύτητας. Θα τη βρει απολύτως ίση με την επιτάχυνση του διαστημοπλοίου.

Ας υποθέσουμε τώρα ότι από ένα μικρό άνοιγμα στο πλευρικό τοίχωμα του επιταχυνόμενου διαστημοπλοίου μπαίνει ένα σώμα το οποίο, σύμφωνα με έναν παρατηρητή που βρίσκεται έξω από το διαστημόπλοιο, κινείται ευθύγραμμα ομαλά (σχ. 6.17α).

Το σώμα θα προσκρούσει στο απέναντι τοίχωμα σε μια θέση που δε βρίσκεται ακριβώς απέναντι από το άνοιγμα, αλλά λίγο πιο κάτω. Για τον εξωτερικό παρατηρητή αυτό είναι απολύτως φυσιολογικό. Αλλά και για τον εσωτερικό παρατηρητή δεν υπάρχει πρόβλημα. Εφόσον έχει υποθέσει ότι βρίσκεται μέσα σε πεδίο βαρύτητας τι πιο φυσιολογικό από το να σκεφτεί ότι το σώμα διαγράφει μια παραβολική τροχιά όπως κάνουν όλα τα σώματα που εκτελούν οριζόντια βολή στην πατρίδα του τη Γη; Μέχρι εδώ λοιπόν ο εσωτερικός παρατηρητής με την υπόθεση ότι βρίσκεται μέσα σε βαρυτικό πεδίο ερμηνεύει όλα τα φαινόμενα, που ο εξωτερικός παρατηρητής αποδίδει στην επιτάχυνση του διαστημόπλοιου.

Σχ. 6.16
Σχ. 6.16

         Σχ. 6.16








Σχ. 6.17
Στις περιπτώσεις (α) βλέπουμε πώς αντιλαμβάνεται την κίνηση του σώματος ο εξωτερικός παρατηρητής. Στην περίπτωση (β) βλέπουμε πως αντιλαμβάνεται την κίνηση του σώματος ο επιβάτης του διαστημοπλοίου. Τα ίδια ισχύουν και αν αντικαταστήσουμε το σώμα με μια φωτεινή δέσμη.
















Σχ. 6.18

        Σχ. 6.18

Σχ. 6.17 Στις περιπτώσεις (α) βλέπουμε πώς αντιλαμβάνεται την κίνηση του σώματος ο εξωτερικός παρατηρητής. Στην περίπτωση (β) βλέπουμε πως αντιλαμβάνεται την κίνηση του σώματος ο επιβάτης του διαστημοπλοίου. Τα ίδια ισχύουν και αν αντικαταστήσουμε το σώμα με μια φωτεινή δέσμη.

Από το ίδιο άνοιγμα μπαίνει τώρα μια δέσμη φωτός (σχ. 6.17). Και σ' αυτή την περίπτωση εφόσον το φως ταξιδεύει με πεπερασμένη ταχύτητα, η δέσμη θα συναντήσει το απέναντι τοίχωμα λίγο χαμηλότερα από το ύψος του ανοίγματος. Για τον εξωτερικό παρατηρητή αυτό είναι απολύτως φυσιολογικό. Ο εσωτερικός παρατηρητής, εάν θέλει να διατηρήσει την υπόθεσή του για το βαρυτικό πεδίο στο οποίο βρίσκεται το διαστημόπλοιο, είναι υποχρεωμένος να πάρει μια γενναία απόφαση για να εξηγήσει την καμπύλωση της δέσμης του φωτός.

Σύμφωνα με τη νευτώνεια θεωρία, το βαρυτικό πεδίο ασκεί δύναμη μόνο σε σώματα που έχουν μάζα. Όμως το φως δεν έχει μάζα. Ο επιβάτης του διαστημόπλοιου πρέπει να εγκαταλείψει τη νευτώνεια θεωρία και να υποθέσει ότι το βαρυτικό του πεδίο μπορεί να καμπυλώσει την τροχιά όχι μόνο ενός σώματος που έχει μάζα αλλά και ενός ηλεκτρομαγνητικού κύματος.

Θα μπορούσαμε να πούμε ότι ο δυστυχής επιβάτης του διαστημοπλοίου έμπλεξε άσχημα και οδηγείται σε παρανοϊκές σκέψεις γιατί δε γνωρίζει την πολύ απλή αλήθεια ότι το βαρυτικό του πεδίο δεν υπάρχει και ότι το διαστημόπλοιο απλώς επιταχύνεται.

Το εντυπωσιακό όμως είναι ότι φαινόμενα εκτροπής φωτεινών δεσμών από ισχυρά βαρυτικά πεδία έχουν πια παρατηρηθεί και επιβεβαιωθεί. Κατά τη διάρκεια εκλείψεων του Ηλίου, παρατηρήθηκαν από τους αστρονόμους αστέρες σε θέσεις διαφορετικές από αυτές στις οποίες βρίσκονται στην πραγματικότητα (σχ. 6.18). Το φαινόμενο οφείλεται στην καμπύλωση της τροχιάς του φωτός που εκπέμπουν τα άστρα από το ισχυρό βαρυτικό πεδίο του Ήλιου.

Ο επιβάτης του διαστημοπλοίου μας ανακάλυψε μια φυσική πραγματικότητα, μένοντας απλώς συνεπής στην αρχική του υπόθεση.

Για να είμαστε πιο ακριβείς, τουλάχιστον όσο μας επιτρέπει το επίπεδο αυτού του βιβλίου, πρέπει να πούμε ότι ο Einstein, για να εξηγήσει την εκτροπή του φωτός από την ευθύγραμμη πορεία του, όταν διαδίδεται μέσα σε βαρυτικό πεδίο, δεν απέδωσε στο φως ιδιότητες αντίστοιχες με τις ιδιότητες της μάζας. Υπέθεσε ότι η παρουσία μιας μάζας, που δημιουργεί γύρω της ένα βαρυτικό πεδίο, καμπυλώνει το χωροχρόνο.

Είναι πολύ δύσκολο να περιγράψει κανείς ποιοτικά έναν καμπυλωμένο χώρο τεσσάρων διαστάσεων. Η δυσκολία προκύπτει από το γεγονός ότι είμαστε όντα που βιωματικά αντιλαμβάνονται χώρους τριών διαστάσεων και

επιπλέον από το γεγονός ότι το βασικό μας εργαλείο για την κατανόηση του χώρου, η ευκλείδεια γεωμετρία, δεν ισχύει σε καμπυλωμένους χώρους. Με δυο παραδείγματα θα προσπαθήσουμε να φωτίσουμε λίγο τα πράγματα και θα σταματήσουμε εκεί.

Πάνω σε μια λεία επίπεδη μεμβράνη εκτοξεύουμε οριζόντια ένα σφαιρίδιο πολύ μικρής μάζας. Το σφαιρίδιο, πρακτικά, κάνει ευθύγραμμη ομαλή κίνηση. Στο κέντρο της μεμβράνης τοποθετούμε μια σφαίρα πολύ μεγάλης μάζας. Η επιφάνεια της μεμβράνης παραμορφώνεται(σχ.6.19).

Σχ. 6.19

                                                                      Σχ. 6.19

Εκτοξεύουμε πάλι ένα πολύ μικρό σφαιρίδιο πάνω στην επιφάνεια της μεμβράνης. Το σφαιρίδιο τώρα προφανώς δεν πρόκειται να κινηθεί ευθύγραμμα. Η τροχιά του θα είναι καμπύλη. Η καμπύλωση της τροχιάς του σφαιριδίου είναι εντονότερη κοντά στη σφαίρα, στο κέντρο της μεμβράνης. Η καμπύλωση αυτή δεν οφείλεται στη βαρυτική έλξη που ασκεί στο σφαιρίδιο η μεγάλη σφαίρα αλλά στην παραμόρφωση που προκάλεσε η μεγάλη σφαίρα στο επίπεδο πάνω στο οποίο κινείται το σφαιρίδιο. Με ανάλογο τρόπο μια πολύ μεγάλη μάζα παραμορφώνει το χωροχρόνο γύρω της στο Σύμπαν.

Για να γίνει αισθητή η καμπύλωση του χωροχρόνου πρέπει η μάζα που την προκαλεί να είναι τεράστια. Για παράδειγμα η καμπύλωση που προκαλεί η Γη δεν είναι καν αισθητή. Τα διαστημικά ταξίδια που γίνονται από τη Γη στη Σελήνη αν και απαιτούν εξαιρετική ακρίβεια υπολογισμών σχεδιάζονται με βάση τη νευτώνεια θεωρία βαρύτητας. Από τα γειτονικά μας ουράνια σώματα μόνο ο ΄Ηλιος έχει αρκετή μάζα για να παραμορφώσει το χωροχρόνο αισθητά (σχ. 6.20).

Σχ. 6.20 Τα ηλεκτρομαγνητικά σήματα που έστελνε στη Γη το διαστημόπλοιο Viking κατά τη διάρκεια της αποστολής του στον Άρη παρουσίαζαν μια καθυστέρηση στη διάδοσή τους σε σχέση με τον αναμενόμενο χρόνο όταν ο Ήλιος βρισκόταν ανάμεσα στο διαστημόπλοιο και τη Γη. Η τροχιά των ηλεκτρομαγνητικών κυμάτων όταν περνούν κοντά από τον Ήλιο καμπυλώνεται με αποτέλεσμα να χρειάζονται περισσότερο χρόνο για να φτάσουν στη Γη από ότι θα χρειάζονταν αν διαδίδονταν ευθύγραμμα.

Η γενική θεωρία της σχετικότητας είχε αρκετές επιτυχίες μέχρι τώρα. Υπάρχουν όμως ακόμη κάποια αναπάντητα ερωτήματα. Για παράδειγμα δε γνωρίζουμε πώς διαδίδονται οι βαρυτικές επιδράσεις. Ο Einstein υπέθεσε ότι διαδίδονται με βαρυτικά κύματα που κινούνται με την ταχύτητα του φωτός όπως οι ηλεκτρομαγνητικές επιδράσεις διαδίδονται με ηλεκτρομαγνητικά κύματα.




































Σχ. 6.20 Τα ηλεκτρομαγνητικά σήματα που έστελνε στη Γη το διαστημόπλοιο Viking κατά τη διάρκεια της αποστολής του στον Άρη παρουσίαζαν μια καθυστέρηση στη διάδοσή τους σε σχέση με τον αναμενόμενο χρόνο όταν ο Ήλιος βρισκόταν ανάμεσα στο διαστημόπλοιο και τη Γη. Η τροχιά των ηλεκτρομαγνητικών κυμάτων όταν περνούν κοντά από τον Ήλιο καμπυλώνεται με αποτέλεσμα να χρειάζονται περισσότερο χρόνο για να φτάσουν στη Γη από ότι θα χρειάζονταν αν διαδίδονταν ευθύγραμμα.

 

Βαρυτικά κύματα όμως μέχρι τώρα δεν έχουν ανιχνευθεί ίσως γιατί, σύμφωνα και με την πρόβλεψη, είναι εξαιρετικά ασθενή. Αν ποτέ ανιχνευθούν η φυσική θα έχει κάνει ένα πολύ μεγάλο βήμα στην ανάπτυξη μιας ενιαίας θεωρίας για την προέλευση των ηλεκτρομαγνητικών και βαρυτικών δυνάμεων.