![]() εικ. 5.7 Ο πύραυλος προωθείται εκτοξεύοντας προς τα πίσω καυσαέρια.
|
5-8 ΠΡΟΩΘΗΣΗ ΤΟΥ ΠΥΡΑΥΛΟΥ
Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται μία δύναμη από τον πύραυλο και ασκούν αντίστοιχα μία αντίθετη δύναμη σ' αυτόν που αποτελεί και την προωστική δύναμη του πυραύλου. Ας υποθέσουμε ότι εξετάζουμε έναν πύραυλο που κινείται στο διάστημα (μακριά από κάθε βαρυτική έλξη). Θα εφαρμόσουμε την ΑΔΟ ως προς το σύστημα αναφοράς του κέντρου μάζας. Εφόσον δεν ασκούνται εξωτερικές δυνάμεις το κέντρο μάζας (άρα και το σύστημα αναφοράς μας) δε θα μεταβάλλει την κινητική του κατάσταση, ανεξάρτητα με οποιαδήποτε μεταβολή συμβεί στην κινητική κατάσταση των τμημάτων που απαρτίζουν το σύστημα. Επιλέγουμε τον άξονα x ώστε να ταυτίζεται με τη διεύθυνση κίνησης του πυραύλου. |
Ο πύραυλος κάποια χρονική στιγμή έχει μάζα Μ + dm και μηδενική ταχύτητα ως προς το σύστημα αναφοράς που επιλέξαμε. Ο πύραυλος, σε ένα πολύ μικρό χρονικό διάστημα dt, εκτοξεύει προς τα πίσω μια ποσότητα καυσαερίων dm με ταχύτητα u ως προς το κέντρο μάζας. Πρακτικά η ταχύτητα αυτή είναι και η ταχύτητα των καυσαερίων ως προς τον πύραυλο. Ο πύραυλος τώρα έχει αυξήσει την ταχύτητά του σε σχέση με πριν κατά du και η μάζα του έχει ελαττωθεί κατά dm. Ως προς το κέντρο μάζας του συστήματος κινείται με dυ προς τα μπροστά.(Σχ.5.24). Σχ.5.24 Εφόσον το σύστημα είναι μονωμένο εφαρμόζουμε την αρχή διατήρησης της ορμής με τις ταχύτητες να αναφέρονται όλες στο σύστημα αναφοράς του κέντρου μάζας. pπριν = pμετά άρα 0 = -dmu + Mdυ Θέλουμε τώρα να υπολογίσουμε την προωστική δύναμη που δέχεται ο πύραυλος . Mdυ = dmu και τελικά όπου |