Κεφάλαιο 1 1.2 ΜΑΚΡΟΜΟΡΙΑΓενικά στοιχείαΓια μια πρώτη γνωριμία με τα μακρομόρια θα πρέπει να ξεκινήσουμε από τους δομικούς τους λίθους, δηλαδή από την πρώτη ύλη με την οποία αυτά οικοδομούνται. Οι πρωτεΐνες οικοδομούνται από αμινοξέα, τα νουκλεϊνικά οξέα από νουκλεοτίδια, οι πολυσακχαρίτες από μονοσακχαρίτες. Συνεπώς τα αμινοξέα, τα νουκλεοτίδια και οι μονοσακχαρίτες αποτελούν τις μονάδες (μονομερή), οι οποίες επαναλαμβανόμενες πολλές φορές συνιστούν τα μακρομόρια (πολυμερή).Τα μονομερή των διάφορων ειδών μακρομορίων μπορεί να είναι ίδια (πρωτεΐνες) ή διαφορετικά (λιπίδια). Είναι ενδιαφέρον το γεγονός ότι τα ίδια είδη δομικών λίθων χρησιμοποιούνται από όλους τους οργανισμούς του πλανήτη μας για την οικοδόμηση των διαφορετικών ειδών πολυμερών. Δημιουργείται έτσι εύλογα το ερώτημα: αφού όλοι ανεξαιρέτως οι οργανισμοί συντίθενται από τα ίδια είδη μονομερών, μήπως έχουν και κοινή καταγωγή; Ωστόσο συνδέονται μεταξύ τους με τον ίδιο πάντοτε βασικό χημικό μηχανισμό, που ονομάζεται συμπύκνωση. Κατά τη συμπύκνωση το ένα μονομερές χάνει ένα άτομο υδρογόνου (Η), ενώ το άλλο μια υδροξυλομάδα (ΟΗ). Αφαιρείται δηλαδή τελικά ένα μόριο νερού και τα δύο μονομερή συνδέονται με ομοιοπολικό δεσμό. Το γεγονός ότι έχει επικρατήσει ο ομοιοπολικός δεσμός για τη σύνδεση των μονομερών σε πολυμερή δεν είναι τυχαίο. Ο δεσμός αυτός (βλ. ένθετο) είναι ο πιο διαδεδομένος δεσμός στην έμβια ύλη, λόγω της σταθερότητάς του. Η διάσπαση των μακρομορίων στα μονομερή τους γίνεται με την προσθήκη νερού και ονομάζεται υδρόλυση. Σε ορισμένα μακρομόρια συναντώνται επίσης και άλλοι δεσμοί οι οποίοι δεν είναι ομοιοπολικοί. Τέτοιοι είναι οι δεσμοί υδρογόνου, οι δυνάμεις Van der Waals και οι υδρόφοβοι δεσμοί. Οι δεσμοί αυτοί, παρ' όλο που δε συμμετέχουν στη συνένωση των μονομερών, παίζουν, όπως θα δούμε στη συνέχεια, σημαντικό ρόλο στην τελική διαμόρφωση των μακρομορίων.
|
Το πρώτο επίπεδο είναι η πρωτοταγής δομή, δηλαδή η αλληλουχία των αμινοξέων στην πολυπεπτιδική αλυσίδα. Στο δεύτερο επίπεδο, που αποτελεί τη δευτεροταγή δομή της πρωτεΐνης, η πολυπεπτιδική αλυσίδα αναδιπλώνεται και αποκτά είτε ελικοειδή είτε πτυχωτή μορφή. Στο τρίτο επίπεδο η πολυπεπτιδική αλυσίδα, πτυχωτή ή ελικοειδής, αναδιπλώνεται στο χώρο, ώστε να αποκτήσει μια καθορισμένη μορφή την τριτοταγή δομή. Αν η πρωτεΐνη αποτελείται από μία μόνο πολυπεπτιδική αλυσίδα, το τελικό στάδιο της διαμόρφωσής της είναι η τριτοταγής δομή. Αν όμως αποτελείται από περισσότερες πολυπεπτιδικές αλυσίδες, το τελικό στάδιο είναι η τεταρτοταγής δομή, δηλαδή ο συνδυασμός των επιμέρους πολυπεπτιδικών αλυσίδων σε ένα ενιαίο πρωτεϊνικό μόριο. Χαρακτηριστικό παράδειγμα αποτελεί η αιμοσφαιρίνη, η οποία συντίθεται από τέσσερις πολυπεπτιδικές αλυσίδες ανά δύο ίδιες. Η διαμόρφωση του πρωτεϊνικού μορίου στον χώρο, καθορίζεται από την αλληλουχία των αμινοξέων στην πεπτιδική αλυσίδα και σταθεροποιείται από τους δεσμούς που σχηματίζονται ανάμεσα στις ομάδες R των αμινοξέων.
|
Η δομή των πρωτεϊνικών μορίων καθορίζει τη λειτουργία τουςΣύμφωνα με τους μετριοπαθέστερους υπολογισμούς, στο ανθρώπινο σώμα υπάρχουν περισσότερες από 30.000 διαφορετικές πρωτεΐνες. Καθεμιά από αυτές εμφανίζει έναν ιδιαίτερο βιολογικό ρόλο. Η αιμοσφαιρίνη, για παράδειγμα, είναι επιφορτισμένη με τη μεταφορά του οξυγόνου και του διοξειδίου του άνθρακα. Το κολλαγόνο είναι δομική πρωτεΐνη ιστών (π.χ. του συνδετικού ιστού), ενώ τα ένζυμα επιταχύνουν τις αντιδράσεις που γίνονται μέσα στο κύτταρο. Από την ποικιλία των διαφορετικών λειτουργιών που κάνουν οι πρωτεΐνες μπορούμε να αντιληφθούμε τη μεγάλη σημασία τους για τα βιολογικά φαινόμενα. O μεταβολισμός, ο πολλαπλασιασμός και όλες οι άλλες λειτουργίες των κυττάρων, και κατ' επέκταση των οργανισμών, στηρίζονται στη δράση των εκπληκτικών αυτών «μοριακών εργαλείων».
ΑΣ ΣΚΕΦΤΟΥΜΕ...Ένα τετραπεπτίδιο αποτελείται από τα αμινοξέα αλανίνη (Α), βαλίνη (Β), ισολευκίνη (Ι) και γλυκίνη (Γ). Πόσες και ποιες είναι οι δυνατές πρωτοταγείς δομές του;
|
Είναι δικαιολογημένο να αναρωτιόμαστε πώς είναι δυνατό μόρια τα οποία είναι φτιαγμένα από τα ίδια είδη αμινοξέων να παρουσιάζουν τόσο διαφορετικές λειτουργίες. Την απάντηση θα τη βρούμε, αν προσπαθήσουμε να εντοπίσουμε εκείνο το στοιχείο που διαφοροποιεί τις πρωτεΐνες μεταξύ τους. Αυτό είναι η διαφορετική αλληλουχία των αμινοξέων, δηλαδή η διαφορετική πρωτοταγής δομή σε συνδυασμό με τις διαφορετικές ομάδες R. Όταν η σειρά των αμινοξέων είναι διαφορετική, η δυνατότητα να σχηματιστούν δεσμοί ανάμεσα στις πλευρικές ομάδες αμινοξέων βρίσκεται σε διαφορετικά σημεία της πεπτιδικής αλυσίδας. Αυτό οδηγεί σε διαφορετική αναδίπλωση του μορίου, που συνεπάγεται διαφορετική δευτεροταγή και τριτοταγή δομή, επομένως σε διαφορετική διαμόρφωση στο χώρο. Η τρισδιάστατη δομή μιας πρωτεΐνης καθορίζει τη λειτουργία που αυτή εκτελεί. Αυτό φαίνεται από τις συνέπειες της έκθεσης της σε ακραίες τιμές θερμοκρασίας ή ρΗ. Τότε η πρωτεΐνη υφίσταται αυτό που ονομάζουμε μετουσίωση . Σπάζουν δηλαδή οι δεσμοί που έχουν αναπτυχθεί μεταξύ των πλευρικών ομάδων, καταστρέφεται η τρισδιάστατη δομή της και η πρωτεΐνη χάνει τη λειτουργικότητά της.Χαρακτηριστικό παράδειγμα αποτελεί η αλλαγή της υφής του ασπραδιού του αβγού κατά τη θέρμανση. Από διαυγές διάλυμα πρωτεϊνικών μορίων, γίνεται λευκό, αδιαφανές και συμπαγές. Αυτό οφείλεται στο ότι η πρωτεΐνη που περιέχει (αλβουμίνη) μετουσιώνεται. Σ' αυτή την κατάσταση είναι εμφανές ότι δεν μπορεί να επιτελέσει πλέον τη λειτουργία για την οποία υπάρχει ως συστατικό του αβγού. Οι πρωτεΐνες, με κριτήριο τη λειτουργία τους, διακρίνονται σε δύο ευρύτερες κατηγορίες. Τις δομικές, που αποτελούν δομικά συστατικά των κυττάρων και κατ' επέκταση των οργανισμών, και τις λειτουργικές, που συμβάλλουν στις διάφορες λειτουργίες.
|
Πίνακας: Διάκριση των πρωτεϊνών και λειτουργίες που αυτές επιτελούν.
ΤΟ ΚΟΜΜΩΤΗΡΙΟ ΚΑΙ ΟΙ... ΧΗΜΙΚΟΙ ΔΕΣΜΟΙΤα μαλλιά του ανθρώπου αποτελούνται σε μεγάλο ποσοστό από πρωτεϊνικά μόρια, τα οποία συνδέονται μεταξύ τους με δεσμούς υδρογόνου. Οι δεσμοί αυτοί δεν είναι ισχυροί και σπάνε εύκολα, όταν τα μόρια θερμανθούν. Αν λοιπόν τα μαλλιά τυλιχτούν γύρω από μια θερμαινόμενη βούρτσα κομμωτηρίου, εξαιτίας της θερμότητας σπάζουν οι δεσμοί υδρογόνου, οι οποίοι συνδέουν τα πρωτεϊνικά μόρια που αποτελούν την τρίχα. Αν στη συνέχεια οι τρίχες κρυώσουν με αυτό το σχήμα, δημιουργούνται νέοι δεσμοί υδρογόνου, οι οποίοι συνδέουν μεταξύ τους διαφορετικά τα πρωτεϊνικά μόρια, σταθεροποιώντας το νέο αυτό σχήμα. Δυστυχώς οι νέοι δεσμοί σιγά σιγά σπάζουν, κυρίως λόγω της υγρασίας της ατμόσφαιρας, και τα μαλλιά επιστρέφουν στην αρχική τους κατάσταση:
|
Τα πρωτεϊνικά μόρια, που αποτελούν το κυριότερο συστατικό των μαλλιών μας, περιέχουν σε μεγάλο ποσοστό στο μόριό τους το αμινοξύ κυστεΐνη. Ανάμεσα σε μόρια κυστείνης, που βρίσκονται σε διαφορετικά σημεία των πεπτιδικών αλυσίδων, σχηματίζονται δισουλφιδικοί δεσμοί. Αυτοί οι δεσμοί είναι σε μεγάλο βαθμό υπεύθυνοι για το σχήμα των τριχών. Οι τρίχες των μαλλιών είναι ίσιες ή κατσαρές εξαιτίας των δισουλφιδικών δεσμών που περιέχουν τα πρωτεϊνικά μόρια, και αυτοί οι δεσμοί τα βοηθούν να διατηρούν το ιδιαίτερο σχήμα τους. Όταν κάνουμε «περμανάντ» στα μαλλιά μας, αρχικά αυτά υφίστανται επεξεργασία με μια χημική ουσία (αναγωγική), η οποία σπάει μερικούς από τους -S-S- δεσμούς. Μετά από αυτό τα μόρια γίνονται πιο «ελαστικά» και τα μαλλιά μπορούν να πάρουν το επιθυμητό σχήμα. Χρησιμοποιώντας τα «ρόλεϊ» του κομμωτηρίου, τους δίνουμε το επιθυμητό σχήμα. Στη συνέχεια προστίθεται μια άλλη ουσία (οξειδωτική), η οποία αναστρέφει την προηγούμενη αντίδραση, οδηγώντας στο σχηματισμό νέων δισουλφιδικών δεσμών, που συγκρατούν τώρα τα μόρια στις νέες τους θέσεις. Με τον ίδιο τρόπο γίνεται και το ίσιωμα των σγουρών μαλλιών. Η «περμανάντ» (permanent - μόνιμος) δεν μπορεί φυσικά να είναι πραγματικά μόνιμη. Τα μαλλιά σιγά σιγά μακραίνουν και πάλι, και τα πρωτεϊνικά μόρια του καινούριου μέρους της τρίχας έχουν τους ίδιους δισουλφιδικούς δεσμούς με τα αρχικά... |
Νουκλεϊκά οξέα: νήματα και αγγελιαφόροι της ζωήςΟι λειτουργίες των οργανισμών πραγματοποιούνται χάρη στις πρωτεΐνες, ενώ ο βιολογικός ρόλος των πρωτεϊνών καθορίζεται από τη μορφή τους. Αν η μορφή τους είναι αποτέλεσμα της πρωτοταγούς δομής τους, εύλογα γεννιέται απορία για το ποιος καθορίζει αυτή την πρωτοταγή δομή. Η απάντηση στο ερώτημα δε δόθηκε με μιάς. Χρειάστηκε να περάσουν περισσότερα από 50 χρόνια, από τότε που ο Ελβετός γιατρός Φ. Μίσερ απομόνωσε νουκλεϊκά οξέα από πυρήνες κυττάρων, ώσπου να μελετηθεί πλήρως η δομή τους. Αποκαλύφτηκε με τις μελέτες αυτές η ικανότητα των νουκλεϊκών οξέων να καθορίζουν την παραγωγή των πρωτεϊνών και έτσι να ελέγχουν όλες τις λειτουργίες και τα κληρονομικά γνωρίσματα των οργανισμών. Υπάρχουν δύο είδη νουκλεϊκών οξέων, το δεσοξυριβονουκλεϊκό και το ριβονουκλεϊκό, που είναι γνωστότερα με τις συντομογραφίες DNA και RNA αντίστοιχα. Πρώτο βήμα για τη μελέτη των νουκλεϊκών οξέων είναι η μελέτη των δομικών τους λίθων, των νουκλεοτιδίων. ΝουκλεοτίδιαΤα νουκλεοτίδια προέρχονται από τη σύνδεση, με ομοιοπολικό δεσμό, τριών διαφορετικών μορίων. Μιας πεντόζης (σάκχαρο με πέντε άτομα άνθρακα), ενός μορίου φωσφορικού οξέος και μιας οργανικής αζωτούχας βάσης. Τα νουκλεοτίδια του DNA περιέχουν την πεντόζη δεσοξυριβόζη (δεσοξυριβονουκλεοτίδια), ενώ τα νουκλεοτίδια του RNA περιέχουν την πεντόζη ριβόζη (ριβονουκλεοτίδια). Οι αζωτούχες βάσεις των νουκλεοτιδίων είναι η αδενίνη (Α), η γουανίνη (G), η θυμίνη (Τ), η κυτοσίνη (C) και η ουρακίλη (U). Η αδενίνη, η γουανίνη και η κυτοσίνη συναντώνται και στα δύο είδη νουκλεϊκών οξέων. Η θυμίνη υπάρχει μόνο στο DNA, ενώ η ουρακίλη μόνο στο RNA.
Σχηματική απεικόνιση ενός τύπου νουκλεοτιδίου. Οι αλυσίδες των νουκλεϊκών οξέων έχουν συνήθως μεγάλο μήκος. Σ' αυτό οφείλεται και το μεγάλο μοριακό τους βάρος. Το μεγάλο μήκος δικαιολογεί επίσης τη μοναδική ιδιότητα του DNA, να είναι ο φορέας όλων των πληροφοριών που χρειάζεται ένας οργανισμός, για να οικοδομηθεί και να λειτουργήσει. Επειδή κάθε νουκλεοτίδιο του DNA μπορεί να περιέχει οποιαδήποτε από τις βάσεις Α, Τ, G, C, υπάρχει, όπως και στις πρωτεΐνες με τα αμινοξέα, ένας απεριόριστος αριθμός διαφορετικών αλληλουχιών νουκλεοτιδίων, που καθεμιά αντιπροσωπεύει και μια διαφορετική πολυνουκλεοτιδική αλυσίδα, δηλαδή ένα διαφορετικό συνδυασμό πληροφοριών. Με 1.000, για παράδειγμα, νουκλεοτίδια μπορούν να προκύψουν 41000 διαφορετικές πολυνουκλεοτιδικές αλυσίδες, καθεμιά από τις οποίες έχει τη δική της αλληλουχία νουκλεοτιδίων. Δομή και βιολογικός ρόλος του DNAΤα πολυνουκλεοτίδια, όπως και οι πρωτεΐνες, εκτός από την πρωτοταγή δομή τους, διαθέτουν και διάταξη στο χώρο (στερεοδιάταξη). Το 1953 οι Τ. Γουάτσον και Φ. Κρικ παρουσίασαν ένα μοντέλο για τη δομή του DNA, που ονομάστηκε μοντέλο της διπλής έλικας. Σύμφωνα με το μοντέλο αυτό, που σήμερα είναι αποδεκτό από ολόκληρη την επιστημονική κοινότητα, ΑΣ ΣΚΕΦΤΟΥΜΕ...Πόσα μόρια νερού αποσπάστηκαν, ώστε να σχηματιστεί το μόριο ενός νουκλεϊνικού οξέος που αποτελείται από 60 νουκλεοτίδια;
|
το μόριο του DNA έχει τα ακόλουθα βασικά χαρακτηριστικά:
|
Τα μόρια του DNA φέρουν τις πληροφορίες για το σύνολο των χαρακτηριστικών που εκφράζονται σε ένα κύτταρο και, κατ' επέκταση, σε έναν οργανισμό. Σε επόμενο κεφάλαιο θα διαπιστώσουμε τον τρόπο με τον οποίο το μόριο του DNA είναι ικανό:
Το σύνολο των μορίων του DNA ενός κυττάρου αποτελεί το γενετικό του υλικό. Στα ευκαρυωτικά κύπαρα, τα κύτταρα δηλαδή που έχουν πυρήνα, το DNA βρίσκεται μέσα σ' αυτόν (πυρήνα) ως συστατικό των χρωμοσωμάτων. Ένα μικρό ποσοστό υπάρχει και στα μιτοχόνδρια και στους χλωροπλάστες. Τα οργανίδια
|
Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΔΟΜΗΣ TOY DNA Στις αρχές του 1950 ένας νεαρός Αμερικανός επιστήμονας, ο Τ. Γουάτσον, πήγε στο Πανεπιστήμιο του Καίμπριτζ, στην Αγγλία, προκειμένου να μελετήσει προβλήματα μοριακής (κρυσταλλογραφικής) δομής του DNA. Στο εργαστήριο του Καβέντις συνάντησε έναν Άγγλο φυσικό, το Φ. Κρικ, που, όπως και ο ίδιος, ενδιαφερόταν για τη μελέτη του DNA. Γρήγορα άρχισαν να δουλεύουν μαζί για την ανακάλυψη της δομής του μορίου αυτού. Αν και δεν προχώρησαν οι ίδιοι σε πειράματα, κατάφεραν να συνδυάσουν και να συνθέσουν τα ως τότε δεδομένα σε ένα ενιαίο μοντέλο. Από προγενέστερες έρευνες άλλων ερευνητών γνώριζαν ότι το μόριο περιέχει νουκλεοτίδια, που αποτελούνται από το σάκχαρο δεσοξυριβόζη, μια φωσφορική ομάδα και μια αζωτούχα βάση, που είναι πουρίνη ή πυριμιδίνη. Οι μελέτες με ακτίνες Χ είχαν στο μεταξύ αποδείξει ότι και το DNA, όπως και μερικές πρωτεΐνες, παρουσιάζει μορφή έλικας. 0 Λ. Πάουλινγκ, ένας ήδη αναγνωρισμένος επιστήμονας, είχε καταλήξει στο ότι, όπως και στις πρωτεΐνες, η ελικοειδής δομή του DNA συγκρατείται λόγω δεσμών υδρογόνου, που αναπτύσσονται μεταξύ διαδοχικών στροφών του μορίου. Τα δεδομένα εξάλλου της εργασίας ενός άλλου επιστήμονα, του Ε. Χάργκαφ, έδειχναν ότι η αναλογία αδενινών - θυμινών είναι 1:1, όπως επίσης ότι 1:1 είναι και η αναλογία γουανινών - κυτοσινών, που υπάρχουν στο μόριο. Από το ισάριθμο των αδενινών με τις θυμίνες και των γουανινών με τις κυτοσίνες οι Τ. Γουάτσον και Φ. Κρικ οδηγήθηκαν στο συμπέρασμα ότι τα μέλη κάθε ζευγαριού είναι συμπληρωματικά ή, με άλλα λόγια, ότι οι δύο κλώνοι συγκρατούνται με δεσμούς υδρογόνου, που αναπτύσσονται μεταξύ των συμπληρωματικών βάσεων. Για την εργασία τους αυτή τιμήθηκαν το 1962 με βραβείο Νόμπελ. Είναι χαρακτηριστικό ότι ο Φ. Κρικ, έγραφε κάποτε: «Θυμάμαι μια τραγουδίστρια σε ένα νυκτερινό κέντρο στη Χονολουλού, που μου έλεγε πως, όταν ήταν μαθήτρια, καταράστηκε το Γουάτσον κι εμένα για τα δύσκολα πράγματα που έπρεπε να μάθει για το DNA. Στην πραγματικότητα, «οι ιδέες που χρειάζονται, για να καταλάβει κανείς τη δομή, όταν αυτή παρουσιάζεται σωστά, είναι πολύ εύκολες, αφού δεν παραβιάζουν την κοινή λογική, πράγμα που συμβαίνει με την κβαντομηχανική ή τη σχετικότητα». |
αυτά έχουν τη δυνατότητα να πολλαπλασιάζονται ανάλογα με τις ανάγκες του κυττάρου και ανεξάρτητα από αυτό. Μπορούν επίσης και να συνθέτουν τα ίδια κάποιες από τις πρωτεΐνες τους. Δομή και βιολογικός ρόλος του RNA To RNA εμφανίζεται με τρεις διαφορετικούς τύπους.
Το αγγελιαφόρο RNA (mRNA), το μεταφορικό RNA (tRNA) και το ριβοσωμικό RNA (rRNA). Καθένας από τους τύπους αυτούς έχει έναν ιδιαίτερο βιολογικό ρόλο. Το αγγελιαφόρο RNA μεταφέρει τη γενετική πληροφορία από το DNA, όπου είναι κωδικοποιημένη, στα ριβοσώματα, όπου γίνεται η σύνθεση των πρωτεϊνών. Το μεταφορικό RNA μεταφέρει στα ριβοσώματα τα αμινοξέα, προκειμένου αυτά να χρησιμοποιηθούν στη σύνθεση των πρωτεϊνών. Τέλος το ριβοσωμικό RNA, μαζί με πρωτεΐνες, αποτελεί δομικό συστατικό των ριβοσωμάτων. Πολλοί επιστήμονες πιστεύουν ότι το γενετικό υλικό των πρώτων οργανισμών ήταν το RNA. To DNA θα πρέπει, κατά την άποψή τους, να εμφανίστηκε αργότερα, ως μηχανισμός προστασίας της γενετικής πληροφορίας από την καθημερινή χρήση για τις ανάγκες του κυττάρου. Σήμερα γνωρίζουμε ότι υπάρχουν ιοί που έχουν RNA για γενετικό υλικό (RNA ιοί).
ΥδατάνθρακεςΟι υδατάνθρακες αποτελούν πηγή ενέργειας για το κύτταρο. Σημαντικότεροι από αυτούς είναι η γλυκόζη, το άμυλο και το γλυκογόνο. Κάποιοι υδατάνθρακες είναι δομικά συστατικά κυττάρων. Ο πιο διαδεδομένος από τους δομικούς υδατάνθρακες είναι η κυτταρίνη, που αποτελεί το βασικό συστατικό του κυτταρικού τοιχώματος των φυτικών κυττάρων. ΜονοσακχαρίτεςΔιακρίνονται σε τριόζες (με 3 άτομα C), πεντόζες (με 5 άτομα C) και εξόζες (με 6 άτομα C). Από τους μονοσακχαρίτες πιο διαδεδομένες είναι οι πεντόζες και οι εξόζες (βλ. πίνακα). Γενικώς, εκτός του ότι αποτελούν πηγή ενέργειας για τα κύτταρα, συμμετέχουν και στη σύνθεση δι- και πολύσακχαριτών. Ειδικά οι πεντόζες ριβόζη και δεσοξυριβόζη συμμετέχουν στη σύνθεση του RNA και DNA αντίστοιχα. Δισακχαρίτες Προκύπτουν από τη συνένωση δύο μονοσακχαριτών.
Οι κυριότεροι δισακχαρίτες είναι η μαλτόζη, η σακχαρόζη και η λακτόζη.
|
Πίνακας: Είδη μονοσακχαριτών και η λειτουργία που αυτοί επιτελούν.
Πίνακας: Οι κυριότεροι δισακχαρίτες και
ΠολυσακχαρίτεςΟι πολυσακχαρίτες προκύπτουν από τη συνένωση πολλών μορίων μονοσακχαριτών. Οι κύριοι πολυσακχαρίτες είναι η κυτταρίνη, το άμυλο και το γλυκογόνο. Παρά το ότι και οι τρεις αυτοί πολυσακχαρίτες οικοδομούνται από το ίδιο μονομερές, το μόριο της γλυκόζης, διαφέρουν ως προς το μέγεθος, τη μορφή που παίρνει το μόριό τους στο χώρο και το βιολογικό τους ρόλο. Η κυτταρίνη και το άμυλο συναντώνται στα φυτικά κύτταρα, η πρώτη ως συστατικό του κυτταρικού τοιχώματος (δομικός πολυσακχαρίτης) και το δεύτερο ως αποταμιευτική ουσία. Το γλυκογόνο υπάρχει στα ζωικά κύτταρα και στα κύτταρα των μυκήτων ως αποταμιευτική ουσία.
|
Πίνακας: Κύριοι πολυσακχαρίτες και η λειτουργία που αυτοί επιτελούν.
|
Η ΚΥΤΤΑΡΙΝΗ ΚΑΙ ΤΑ ΒΙΒΛΙΑ ΣΟΥΗ κυτταρίνη είναι ένας πολυσακχαρίτης. Το μόριό του αποτελείται από αρκετές χιλιάδες μόρια γλυκόζης. Ως πρώτη ύλη θεωρείται διαδεδομένη, πρόσφορη και ανανεώσιμη, μια και αποτελεί το κυριότερο συστατικό του κυτταρικού τοιχώματος των φυτικών κυττάρων. Το βαμβάκι, του οποίου όλοι γνωρίζουμε τις χρήσεις, αποτελείται σχεδόν αποκλειστικά από κυτταρίνη. Το ίδιο ισχύει και για το λινάρι. Η κυτταρίνη χρησιμοποιείται κυρίως για την παραγωγή χαρτιού, χωρίς αυτό να σημαίνει ότι δεν έχει και άλλες χρήσεις, που αφορούν κυρίως προϊόντα για τη συμπύκνωση χρωμάτων, τη σταθεροποίηση τροφίμων, καλλυντικών κ.ά. Το ξύλο, βασικό συστατικό του οποίου είναι η κυτταρίνη, άρχισε να χρησιμοποιείται για την παραγωγή χαρτιού κατά το 18ο αιώνα και από τότε έως σήμερα οι τεχνικές έχουν εξελιχτεί σε απίστευτο βαθμό. Σήμερα έχουμε στη διάθεση μας πολλές ποιότητες χαρτιού, με ιδιότητες που μπορούν να καλύψουν κάθε ανάγκη μας, ακόμη και ένδυσης. Οι ιδιότητες του χαρτιού εξαρτώνται από τις ίνες του φυτού από το οποίο προέρχεται, όπως επίσης και από την τεχνική που ακολουθείται. Η κυτταρίνη δίνει στο χαρτί τα απαραίτητα χαρακτηριστικά σε ό,τι αφορά τη σταθερότητα, την ελαστικότητα, τη στιλπνότητα κτλ. Για να φτιαχτεί το χαρτί, το ξύλο πολτοποιείται με φυσικές και χημικές διαδικασίες. Με χημική επεξεργασία απομακρύνονται διάφορα υλικά, με αποτέλεσμα να έχουμε χαρτί καλύτερης ποιότητας. Πολτός πολύ καλής ποιότητας, όπως αυτός που φτιάχνεται από βαμβάκι, χρησιμοποιείται για χαρτί μακράς διάρκειας, το οποίο χρειάζονται οι τράπεζες, ή για ειδικό χαρτί, όπως αυτό από το οποίο φτιάχνονται τα διάφορα φίλτρα. Είναι περίπου 7 ή 8 φορές πιο ακριβό από το κοινό χαρτί καλής ποιότητας. Τα τελευταία χρόνια γίνεται προσπάθεια να ανακυκλώνεται ένα μεγάλο ποσοστό από το χαρτί που ξοδεύουμε. Γίνεται ακόμη προσπάθεια να αξιοποιούνται σωστά τα δάση, τα οποία ανανεώνονται συστηματικά. Τα τελευταία χρόνια οι τεχνικές έχουν εξελιχθεί και είναι δυνατό να πάρουμε χαρτί σχεδόν οποιασδήποτε ποιότητας με ανακύκλωση. Παραμένει όμως δύσκολο να απομακρύνουμε τα μελάνια και να έχουμε λευκό χαρτί χωρίς τη χρήση επικίνδυνων χημικών. Επιπλέον ανακύκλωση του προερχόμενου από ανακύκλωση χαρτιού μπορεί να βοηθήσει να αποφύγουμε τη ρύπανση από το κάψιμο (αύξηση του διοξειδίου του άνθρακα της ατμόσφαιρας) ή την ταφή σε ήδη κορεσμένες από απορρίμματα περιοχές.
|
ΟΙ ΑΠΟΤΑΜΙΕΥΤΙΚΕΣ ΟΥΣΙΕΣ
|
ΦωσφολιπίδιαΤα περισσότερο διαδεδομένα φωσφολιπίδια είναι αυτά που αποτελούνται από ένα μόριο γλυκερόλης συνδεδεμένο με δύο μόρια λιπαρών οξέων, ένα μόριο φωσφορικού οξέος και ένα μικρότερο πολικό μόριο. Τα φωσφολιπίδια εμφανίζουν ένα ιδιαίτερο χαρακτηριστικό σε σχέση με το νερό. Η κεφαλή του μορίου τους είναι υδρόφιλη, ενώ αντίθετα η ουρά του μορίου τους είναι υδρόφοβη. Για το λόγο αυτό, όταν τα φωσφολιπίδια τοποθετηθούν πάνω στο νερό, τείνουν να σχηματίσουν ένα λεπτό στρώμα, στο οποίο οι υδρόφιλες κεφαλές βρίσκονται μέσα στο νερό, ενώ οι υδρόφοβες ουρές προβάλλουν έξω από την ελεύθερη επιφάνεια. Στα κύτταρα, επειδή και το εξωτερικό και το εσωτερικό τους περιβάλλον είναι υδατικό, τα φωσφολιπίδια αυθόρμητα συγκροτούν διπλοστιβάδα. Οι υδρόφιλες κεφαλές τους στρέφονται προς το υδατικό εξωκυττάριο και ενδοκυττάριο περιβάλλον, ενώ οι υδρόφοβες ουρές τους «κρύβονται» στο εσωτερικό της διπλοστιβάδας. Η «επιθυμία» του υδρόφοβου μέρους των φωσφολιπιδίων να αποφεύγει οπωσδήποτε το νερό κάνει τα μόρια αυτά να έλκονται και να προσεγγίζουν στενά το ένα με το άλλο. Δημιουργείται έτσι μια σταθερή δομή. Η ιδιότητα αυτή είναι σημαντική για τη συγκρότηση και τη λειτουργικότητα των μεμβρανών του κυττάρου, των οποίων κύριο δομικό συστατικό είναι τα φωσφολιπίδια.
|
ΣτεροειδήΤα στεροειδή διαφέρουν από τα υπόλοιπα λιπίδια ως προς τη δομή τους. Ένα στεροειδές, που είναι γνωστό περισσότερο για τις αρνητικές συνέπειές του, στην υγεία μας, αφού προκαλεί αρτηριοσκλήρυνση, είναι η χοληστερόλη. Θα πρέπει να σημειώσουμε ωστόσο ότι η χοληστερόλη αποτελεί παράλληλα συστατικό των μεμβρανών των ζωικών κυττάρων. ΑΣ ΣΚΕΦΤΟΥΜΕ...Ένα άτομο βρίσκεται εδώ και πολύ καιρό σε δίαιτα με χαμηλά λιπαρά, μετά από σύσταση του γιατρού του. Τελευταία τον άκουσες να λέει γεμάτος ενθουσιασμό: «Θα κατεβάσω τη χοληστερίνη μου στο μηδέν». Πώς θα του εξηγούσες γιατί αυτό είναι όχι μόνο ένας ανέφικτος αλλά και ανεπιθύμητος στόχος;
Η «ΧΟΛΗΣΤΕΡΙΝΗ» ΣΤΗ ΖΩΗ ΜΑΣΗ χοληστερόλη (συνήθως αναφέρεται ως χοληστερίνη) είναι ένα στεροειδές κοινό στους ζωικούς οργανισμούς και φυσικά στον άνθρωπο, μια και αποτελεί συστατικό των κυτταρικών μεμβρανών τους. Συχνά όμως η εναπόθεση χοληστερόλης, σε συνδυασμό με άλλες ουσίες, στα τοιχώματα των αγγείων περιορίζει τη διατομή τους (αρτηριοσκλήρυνση). Αυτό έχει ως αποτέλεσμα να ελαττώνεται ή και να διακόπτεται τελείως η ροή του αίματος. Ανάλογα με την έκταση του φαινομένου και την περιοχή στην οποία συμβαίνει προκαλούνται πολλές ανεπιθύμητες καταστάσεις. Σε ότι αφορά τον άνθρωπο, σ' αυτές περιλαμβάνεται ο εκφυλισμός των ιστών ή και ο θάνατος τους εξαιτίας διακοπής στην παροχή αίματος, η δημιουργία θρόμβων, που μεταφερόμενοι με την κυκλοφορία του αίματος αποφράζουν τα αγγεία και η επιβάρυνση της λειτουργίας της καρδιάς, που εργάζεται εντονότερα, ώστε να στείλει σε ολόκληρο τον οργανισμό την απαραίτητη ποσότητα αίματος. Σοβαρότερες περιπτώσεις είναι τα εγκεφαλικά επεισόδια από την απόφραξη ή τη ρήξη των αρτηριών του εγκεφάλου και τα εμφράγματα της καρδιάς από την απόφραξη των στεφανιαίων αρτηριών. Το κάπνισμα, η καθιστική ζωή, η διατροφή με τροφές που περιέχουν σε υπερβολική ποσότητα ζωικά λίπη, το άγχος και κληρονομικοί παράγοντες ευνοούν την εναπόθεση λιπαρών ουσιών στις αρτηρίες. |
ΠΕΡΙΛΗΨΗΣτους οργανισμούς επικρατούν τα στοιχεία άνθρακας, υδρογόνο, οξυγόνο και άζωτο, γιατί αυτά εξασφαλίζουν τη σταθερότητα και ποικιλομορφία στα βιομόρια. Μέσα στα κύτταρα οι δομικοί λίθοι ενώνονται μεταξύ τους με ομοιοπολικούς δεσμούς σχηματίζοντας τα μακρομόρια. Τα αμινοξέα ενώνονται μεταξύ τους με πεπτιδικό δεσμό σχηματίζοντας τις πρωτεΐνες, που έχουν δομικό και λειτουργικό ρόλο. Τα νουκλεοτίδια ενώνονται μεταξύ τους σχηματίζοντας τα νουκλεϊκά οξέα (DNA και RNA). To DNA δομείται από δεσοξυριβονουκλεοτίδια, ενώ το RNA δομείται από ριβονουκλεοτίδια και εμφανίζεται ως αγγελιαφόρο RNA (mRNA), ως μεταφορικό RNA (tRNA) και ως ριβοσωμικό RNA (rRNA). Τα μόρια της γλυκόζης ενώνονται μεταξύ τους σχηματίζοντας πολυσακχαρίτες. Οι πολυσακχαρίτες άμυλο και γλυκογόνο έχουν αποταμιευτικό ρόλο, ενώ η κυτταρίνη δομικό ρόλο. Μια άλλη κατηγορία οργανικών ενώσεων μεγάλου μοριακού βάρους είναι τα λιπίδια, που διακρίνονται σε ουδέτερα λίπη, σε φωσφολιπίδια και σε στεροειδή. Τα ουδέτερα λίπη είναι αποθήκες ενέργειας. Τα φωσφολιπίδια έχουν δομικό ρόλο και από τα στεροειδή η χοληστερόλη αποτελεί συστατικό των μεμβρανών των |
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ
|
|
|
ΑΣ ΕΡΕΥΝΗΣΟΥΜΕ...
|