Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια. Σημαντική μάλιστα ώθηση στην ανάπτυξη του κλάδου αυτού των Μαθηματικών αποτέλεσε η γόνιμη αλληλογραφία που αναπτύχθηκε ανάμεσα στους Pascal και Fermat το 17ο αιώνα με αφορμή διάφορα προβλήματα που προέκυψαν από την ενασχόληση του ανθρώπου με τα τυχερά παιχνίδια. Μολονότι όμως τα τυχερά παιχνίδια ήταν ευρέως διαδεδομένα και στους Αρχαίους Έλληνες και στους Ρωμαίους, η Θεωρία των Πιθανοτήτων δεν αναπτύχθηκε κατά την αρχαιότητα, όπως συνέβη με άλλους κλάδους των Μαθηματικών, αλλά πολύ αργότερα, το 16ο και 17ο αιώνα μ.Χ. Γι’αυτό πολλοί απορρίπτουν την άποψη ότι η Θεωρία των Πιθανοτήτων οφείλει τη γένεσή της στην ενασχόληση του ανθρώπου με τα τυχερά παιχνίδια και την αποδίδουν στις ανάγκες να λυθούν προβλήματα που παρουσιάστηκαν με την ανάπτυξη του εμπορίου, των ασφαλίσεων, της συλλογής εσόδων του κράτους κτλ. Η ανάπτυξη της Θεωρίας των Πιθανοτήτων οφείλεται επίσης και στις ανάγκες των Φυσικών Επιστημών όπως η εφαρμογή της Θεωρίας Σφαλμάτων σε αστρονομικές παρατηρήσεις. Η Θεωρία των Πιθανοτήτων αναπτύχθηκε ακόμα περισσότερο το 18ο αιώνα με τις αξιοσημείωτες εργασίες των μαθηματικών Bernoulli, De Moivre, Laplace και Gauss. Ιδιαίτερα ο Laplace με τις εργασίες του άνοιξε μια καινούργια εποχή για τη Θεωρία Πιθανοτήτων. Γιατί ο Laplace δεν περιορίζεται μόνο στη μαθηματική ανάλυση των τυχερών παιγνιδιών, αλλά εφαρμόζει τα συμπεράσματά του και σε ένα πλήθος από επιστημονικά και πρακτικά προβλήματα. Έτσι, με αφορμή τη μελέτη των σφαλμάτων που προκύπτουν στις επαναλαμβανόμενες μετρήσεις του ίδιου αστρονομικού μεγέθους ανακαλύπτεται η περίφημη κανονική κατανομή του Gauss. Κατόπιν αποδεικνύεται ότι η κανονική κατανομή απεικονίζει όχι μόνο την κατανομή των σφαλμάτων των αστρονομικών παρατηρήσεων αλλά και την κατανομή πολλών βιολογικών, κοινωνικών και φυσικών φαινομένων. Έτσι, στη διάρκεια του 19ου αιώνα γεννιούνται νέοι κλάδοι των εφαρμοσμένων μαθηματικών, όπως είναι η Θεωρία των Σφαλμάτων, τα Ασφαλιστικά Μαθηματικά και η Στατιστική Μηχανική. Στις μέρες μας η Θεωρία των Πιθανοτήτων με τις εργασίες πολλών διάσημων μαθηματικών, όπως είναι οι Chebyshev, Markov, Von Mises, Kolmogorov κ.ά., έχει σημειώσει αλματώδη πρόοδο. Καινούργια θεωρητικά αποτελέσματα παρέχουν νέες δυνατότητες για τη χρησιμοποίηση των μεθόδων της Θεωρίας των Πιθανοτήτων. Είναι αξιοσημείωτο το γεγονός ότι οι εφαρμογές των Πιθανοτήτων αναφέρονται σε ένα ευρύτατο φάσμα επιστημών όπως η Φυσική, η Χημεία, η Γενετική, η Ψυχολογία, η Οικονομολογία, η Τηλεπικοινωνία, η Μετεωρολογία κτλ. Η Θεωρία των Πιθανοτήτων ανήκει στους κλάδους των Μαθηματικών που συμβαδίζουν με την ανάπτυξη των φυσικών επιστημών και της τεχνολογίας. Αυτό δε σημαίνει βέβαια ότι η Θεωρία των Πιθανοτήτων είναι απλώς ένα βοηθητικό εργαλείο για τη λύση πρακτικών προβλημάτων των άλλων επιστημών. Απεναντίας έχει μετασχηματιστεί σε έναν αυτοτελή κλάδο των καθαρών Μαθηματικών, που έχει δικά του προβλήματα και δικές του μεθόδους. |
1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Όπως γνωρίζουμε από τη Φυσική, αν θερμάνουμε αποσταγμένο νερό σε 100o Κελσίου στην επιφάνεια της θάλασσας, δηλαδή σε ατμοσφαιρική πίεση 760 mm Hg, το νερό θα βράσει. Επίσης, αν αφήσουμε ένα σώμα να πέσει στο κενό υπό την επίδραση της βαρύτητας, μπορούμε να προβλέψουμε με ακρίβεια το διάστημα που θα διανύσει σε ορισμένο χρόνο t. Κάθε τέτοιο πείραμα κατά το οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό (deterministic) πείραμα. Υπάρχουν όμως και πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες. Ένα τέτοιο πείραμα ονομάζεται πείραμα τύχης (random experiment). Για παράδειγμα, δεν μπορούμε να προβλέψουμε με ακρίβεια τον αριθμό των τροχαίων ατυχημάτων που συμβαίνουν σε μια εβδομάδα σε ένα σημείο μιας εθνικής οδού, αφού ο αριθμός αυτός εξαρτάται από πολλούς απρόβλεπτους παράγοντες. Πειράματα τύχης είναι και τα εξής:
|
Δειγματικός Χώρος Όλα τα αποτελέσματα που μπορούν να εμφανιστούν σε ένα πείραμα τύχης λέγονται δυνατά αποτελέσματα ή δυνατές περιπτώσεις του πειράματος. Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Ω. Αν δηλαδή ω1,ω2,...,ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος τύχης, τότε ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω={ω1, ω2, ... , ωκ} . Έτσι, στο πρώτο από τα παραπάνω πειράματα τύχης, αν με Κ συμβολίσουμε το αποτέλεσμα να φέρουμε “κεφαλή” και με Γ το αποτέλεσμα να φέρουμε “γράμματα”, τότε ο δειγματικός χώρος είναι Ω={Κ,Γ}. Επίσης, στο δεύτερο από τα παραπάνω πειράματα τύχης η ένδειξη της άνω έδρας μπορεί να είναι ένας από τους αριθμούς 1, 2, 3, 4, 5, 6. Επομένως, ο δειγματικός χώρος είναι Ω={1,2,3,4,5,6}. |
Ενδεχόμενα Το σύνολο που έχει ως στοιχεία ένα ή περισσότερα αποτελέσματα ενός πειράματος τύχης λέγεται ενδεχόμενο (event) ή γεγονός. Για παράδειγμα, στη ρίψη ενός ζαριού τα σύνολα Α={2,4,6}, B={1,3,5} και Γ={6} είναι ενδεχόμενα. Το Α είναι το ενδεχόμενο να φέρουμε άρτιο αριθμό, το Β να φέρουμε περιττό αριθμό και το Γ να φέρουμε 6. Είναι φανερό ότι ένα ενδεχόμενο είναι υποσύνολο του δειγματικού χώρου. Ένα ενδεχόμενο λέγεται απλό όταν έχει ένα μόνο στοιχείο και σύνθετο αν έχει περισσότερα στοιχεία. Για παράδειγμα, το Γ είναι ένα απλό ενδεχόμενο, ενώ τα Α και Β είναι σύνθετα ενδεχόμενα. Όταν το αποτέλεσμα ενός πειράματος, σε μια συγκεκριμένη εκτέλεσή του είναι στοιχείο ενός ενδεχομένου, τότε λέμε ότι το ενδεχόμενο αυτό πραγματοποιείται ή συμβαίνει. Γι’αυτό τα στοιχεία ενός ενδεχομένου λέγονται και ευνοϊκές περιπτώσεις για την πραγματοποίησή του. Έτσι, για παράδειγμα, το ενδεχόμενο A={2,4,6} έχει τρεις ευνοϊκές περιπτώσεις και πραγματοποιείται, όταν φέρουμε 2 ή 4 ή 6. Ο ίδιος ο δειγματικός χώρος Ω ενός πειράματος θεωρείται ότι είναι ενδεχόμενο, το οποίο μάλιστα πραγματοποιείται πάντοτε, αφού όποιο και αν είναι το αποτέλεσμα του πειράματος θα ανήκει στο Ω. Γι’αυτό το Ω λέγεται βέβαιο ενδεχόμενο. Δεχόμαστε ακόμα ως ενδεχόμενο και το κενό σύνολο $\varnothing$ που δεν πραγματοποιείται σε καμιά εκτέλεση του πειράματος τύχης. Γι’αυτό λέμε ότι το $\varnothing$ είναι το αδύνατο ενδεχόμενο. Το πλήθος των στοιχείων ενός ενδεχομένου Α θα το συμβολίζουμε με Ν(Α) . Επομένως, αν Ω={1,2,3,4,5,6} και A={2,4,6} έχουμε N(Α)=3, N(Ω)=6 και Ν($\varnothing$)=0 . |
Πράξεις με Ενδεχόμενα Όπως είδαμε, τα ενδεχόμενα είναι υποσύνολα του δειγματικού χώρου Ω. Επομένως, μεταξύ των ενδεχομένων ενός πειράματος μπορούν να οριστούν οι γνωστές πράξεις μεταξύ των συνόλων, από τις οποίες προκύπτουν νέα ενδεχόμενα. Έτσι, αν Α και Β είναι δύο ενδεχόμενα, έχουμε:
Στον παρακάτω πίνακα τα Α και Β συμβολίζουν ενδεχόμενα ενός πειράματος και το ω ένα αποτέλεσμα του πειράματος αυτού. Στην αριστερή στήλη του πίνακα αναγράφονται διάφορες σχέσεις για τα Α και Β διατυπωμένες στην κοινή γλώσσα, και στη δεξιά στήλη αναγράφονται οι ίδιες σχέσεις αλλά διατυπωμένες στη γλώσσα των συνόλων.
Για παράδειγμα, στη ρίψη ενός ζαριού έστω τα ενδεχόμενα A={1, 2, 3, 4} και B={2, 4, 6}. Αν το αποτέλεσμα της ρίψης είναι ο αριθμός 1, τότε τα ενδεχόμενα Α, Α U Β, A - B, B', πραγματοποιούνται, ενώ τα Α', B, (Α U Β)', (A - B) , A ∩ B δεν πραγματοποιούνται. |
Ασυμβίβαστα Ενδεχόμενα
|
ΕΦΑΡΜΟΓΕΣ 1η Ρίχνουμε ένα νόμισμα τρεις διαδοχικές φορές. i) Να γραφτεί ο δειγματικός χώρος Ω του πειράματος. ii) Να παρασταθούν με αναγραφή τα ενδεχόμενα που προσδιορίζονται από την αντίστοιχη ιδιότητα: Α1: “Ο αριθμός των Κ υπερβαίνει τον αριθμό των Γ” iii) Να βρεθούν τα ενδεχόμενα A'3, A5∩ A2, A5 U A4, ΛΥΣΗ i) Για να προσδιορίσουμε το δειγματικό χώρο, θα χρησιμοποιήσουμε ένα δεντροδιάγραμμα: Άρα, ο δειγματικός χώρος του πειράματος αποτελείται από διατεταγμένες τριάδες με στοιχεία το Κ και το Γ και είναι Ω={ΚΚΚ,ΚΚΓ,ΚΓ,Κ,ΚΓΓ,ΓΚΚ,ΓΓΚ,ΓΓΓ}. ii) Έχοντας υπόψη το δειγματικό χώρο Ω και την αντίστοιχη ιδιότητα έχουμε: A1={ΚΚΚ,ΚΚΓ,ΚΓK,ΓΚΚ}. A2={ΚΚΚ,ΚΓΚ,ΓΚΚ}. A3={ΚΚΚ,ΚΚΓ,ΚΓK,ΓΚΚ}. (Παρατηρούμε ότι A3=A1) A4={ΚΚΚ,ΓΓΓ}. A5={ΚΚΚ,ΚΓΓ,KΓΚ,KΓΓ}. iii) Το A'3 περιέχει εκείνα τα στοιχεία του δειγματικού χώρου που δεν περιέχει το A3, περιέχει δηλαδή τα στοιχεία στα οποία ο αριθμός των Κ είναι μικρότερος από 2. Επομένως, A'3={ΚΓΓ, ΓΚΓ, ΓΓΚ, ΓΓΓ}. Το ενδεχόμενο A5 ∩ A2 περιέχει τα κοινά στοιχεία των A5 και A2 , δηλαδή τα στοιχεία με δύο ακριβώς Κ, εκ των οποίων το ένα στην πρώτη θέση. Επομένως, A5 ∩ A2={KKΓ,ΚΓΚ} . Το ενδεχόμενο A5 ∩ A4 περιέχει τα στοιχεία που στην πρώτη θέση έχουν Κ ή τα στοιχεία που έχουν ίδιες και τις τρεις ενδείξεις. Επομένως,A5 ∩ A2={KKΓ,ΚΓΚ,ΚΚΓ,ΚΚΚ,ΓΓΓ}. |
2η Δίνονται δύο ενδεχόμενα Α και Β ενός πειράματος με δειγματικό χώρο Ω. Να παρασταθούν με διαγράμματα Venn και να εκφραστούν με τη βοήθεια συνόλων τα ενδεχόμενα που ορίζονται με τις εκφράσεις: i) Πραγματοποιείται μόνο ένα από τα Α και Β. ΛΥΣΗ
|
|
Εισαγωγή Ένα από τα κύρια χαρακτηριστικά του πειράματος τύχης, όπως είδαμε, είναι η αβεβαιότητα για το ποιο αποτέλεσμα του πειράματος θα εμφανιστεί σε μια συγκεκριμένη εκτέλεσή του. Επομένως, αν Α είναι ένα ενδεχόμενο, δεν μπορούμε με βεβαιότητα να προβλέψουμε αν το Α θα πραγματοποιηθεί ή όχι. Γι’αυτό είναι χρήσιμο να αντιστοιχίσουμε σε κάθε ενδεχόμενο Α έναν αριθμό, που θα είναι ένα μέτρο της “προσδοκίας” με την οποία αναμένουμε την πραγματοποίησή του. Τον αριθμό αυτό τον ονομάζουμε πιθανότητα του Α και τον συμβολίζουμε με P(Α). Πώς όμως θα προσδιορίσουμε για κάθε ενδεχόμενο ενός πειράματος τύχης την πιθανότητά του; Δηλαδή πώς θα βρούμε μια διαδικασία με την οποία σε κάθε ενδεχόμενο θα αντιστοιχίζουμε την πιθανότητά του; Θα προσπαθήσουμε στη συνέχεια να απαντήσουμε στα ερωτήματα αυτά. Έννοια και Ιδιότητες Σχετικής Συχνότητας Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται κ φορές, τότε ο λόγος $\dfrac{κ}{ν}$ ονομάζεται σχετική συχνότητα του Α και συμβολίζεται με . Ιδιαίτερα αν ο δειγματικός χώρος ενός πειράματος είναι το πεπερασμένο σύνολο Ω={ω1,ω2,...,ωλ} και σε ν εκτελέσεις του πειράματος αυτού τα απλά ενδεχόμενα {ω1},{ω2},...,{ωλ} πραγματοποιούνται {κ1},{κ2},...,{κλ} φορές αντιστοίχως, τότε για τις σχετικές συχνότητες $f_1 = \dfrac{κ_1}{ν} , f_2 = \dfrac{κ_2}{ν} , ... , f_λ = \dfrac{κ_λ}{ν}$ των απλών ενδεχομένων θα έχουμε: 1. 0≤ $f_i$ ≤1, i=1,2,...,λ (αφού 0≤ κi≤ ν ) 2. $f_1 + f_2 + ... + f_λ = \dfrac{κ_1 + κ_2 + ... + κ_λ}{ν} = \dfrac{ν}{ν} = 1$ . Ας εκτελέσουμε τώρα το ακόλουθο πείραμα: Ρίχνουμε ένα συμμετρικό και ομογενές νόμισμα και σημειώνουμε με Κ το αποτέλεσμα “κεφαλή” και με Γ το αποτέλεσμα “γράμματα”. Στον παρακάτω πίνακα αναφέρονται το πλήθος των Κ και οι αντίστοιχες σχετικές συχνότητες στις 10, 20, 30,…,200 ρίψεις του νομίσματος ενώ στο σχήμα 1 παριστάνεται το αντίστοιχο διάγραμμα σχετικών συχνοτήτων.
|
Κλασικός Ορισμός Πιθανότητας Ας εξετάσουμε την ειδική περίπτωση του αμερόληπτου νομίσματος. Ρίχνουμε ένα τέτοιο νόμισμα και παρατηρούμε την όψη που θα εμφανιστεί. Όπως διαπιστώσαμε προηγουμένως η σχετική συχνότητα καθενός από τα απλά ενδεχόμενα {K},{Γ} τείνει στον αριθμό $\dfrac{1}{2}$. Ομοίως θα μπορούσαμε να διαπιστώσουμε ότι στη ρίψη ενός αμερόληπτου ζαριού η σχετική συχνότητα καθενός από τα απλά ενδεχόμενα {1},{2},{3},{4},{5} και {6} τείνει στον αριθμό $\dfrac{1}{6}$. Σε πειράματα όπως τα προηγούμενα λέμε ότι τα δυνατά αποτελέσματα ή, ισοδύναμα, τα απλά ενδεχόμενα είναι ισοπίθανα.
$P(A) = \dfrac{\text{Πλήθος Ευνοικών Περιπτώσεων}}{\text{Πλήθος Δυνατών Περιπτώσεων}} = \dfrac{N(A)}{N(Ω)}$
Έτσι, έχουμε τον κλασικό ορισμό της πιθανότητας, που διατυπώθηκε από τον Laplace το 1812. 1. $P(Ω) = \dfrac{N(Ω)}{Ν(Ω)} = 1$ 2. $P(\varnothing) = \dfrac{0}{Ν(Ω)} = 0$ 3. Για κάθε ενδεχόμενο Α ισχύει 0≤P(A)≤1 , αφού το πλήθος των στοιχείων ενός ενδεχομένου είναι ίσο ή μικρότερο από το πλήθος των στοιχείων του δειγματικού χώρου. |
Αξιωματικός Ορισμός Πιθανότητας Για να μπορεί όμως να χρησιμοποιηθεί ο κλασικός ορισμός της πιθανότητας σε ένα δειγματικό χώρο με πεπερασμένο πλήθος στοιχείων, είναι απαραίτητο τα απλά ενδεχόμενα να είναι ισοπίθανα. Υπάρχουν όμως πολλά πειράματα τύχης, των οποίων ο δειγματικός χώρος δεν αποτελείται από ισοπίθανα απλά ενδεχόμενα. Όπως για παράδειγμα ο αριθμός των αυτοκινητιστικών δυστυχημάτων μια ορισμένη εβδομάδα, η ρίψη ενός ζαριού που δεν είναι συμμετρικό κτλ. Για τις περιπτώσεις αυτές χρησιμοποιούμε τον παρακάτω αξιωματικό ορισμό της πιθανότητας, ο οποίος έχει ανάλογες ιδιότητες με τη σχετική συχνότητα.
Αν $P(ω_i) = \dfrac{1}{ν}$, i=1,2,...,ν, τότε έχουμε τον κλασικό ορισμό της πιθανότητας ενός ενδεχομένου. ΣΧΟΛΙΟ Όταν έχουμε ένα δειγματικό χώρο Ω={ω1,ω2,...,ωκ} και χρησιμοποιούμε τη φράση “παίρνουμε τυχαία ένα στοιχείο του Ω”, εννοούμε ότι όλα τα δυνατά αποτελέσματα είναι ισοπίθανα με πιθανότητα $P(ω_i) = \dfrac{1}{ν}$, i=1,2,...,ν. |
Κανόνες Λογισμού των Πιθανοτήτων Για τις πιθανότητες των ενδεχομένων ενός δειγματικού χώρου Ω ισχύουν οι παρακάτω ιδιότητες, γνωστές ως “κανόνες λογισμού των πιθανοτήτων”. Οι κανόνες αυτοί θα αποδειχθούν στην περίπτωση που τα απλά ενδεχόμενα είναι ισοπίθανα. Αποδεικνύεται όμως ότι ισχύουν και στην περίπτωση που τα απλά ενδεχόμενα δεν είναι ισοπίθανα. 1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει:
ΑΠΟΔΕΙΞΗ Αν N(A)=κ και N(Β)=λ, τότε το ΑUΒ έχει κ+λ στοιχεία, γιατί αλλιώς τα Α και Β δε θα ήταν ασυμβίβαστα. Δηλαδή, έχουμε N(AUΒ)=κ+λ= N(A)+N(Β). Επομένως:
Η ιδιότητα αυτή είναι γνωστή ως απλός προσθετικός νόμος (simply additive law) και ισχύει και για περισσότερα από δύο ενδεχόμενα. Έτσι, αν τα ενδεχόμενα Α, Β και Γ είναι ανά δύο ασυμβίβαστα θα έχουμε P(AUBUΓ)=P(A)+P(B)+P(Γ). 2. Για δύο συμπληρωματικά ενδεχόμενα Α και Α' ισχύει:
ΑΠΟΔΕΙΞΗ
Επειδή A∩A'=, δηλαδή τα Α και A' είναι ασυμβίβαστα, έχουμε διαδοχικά, σύμφωνα με τον απλό προσθετικό νόμο: P(AUA')=P(A)+P(A') P(Ω)=P(A)+P(A') 1=P(A)+P(A'). Οπότε P(A')=1-P(A). |
3. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει:
ΑΠΟΔΕΙΞΗ
Για δυο ενδεχόμενα Α και Β έχουμε N(AUB)=N(A)+N(B)-N(A∩B), (1) αφού στο άθροισμα N(A)+N(B)το πλήθος των στοιχείων του A∩B υπολογίζεται δυο φορές. Αν διαιρέσουμε τα μέλη της (1) με N(Ω) έχουμε: $\dfrac{N(A \cup B)}{N(Ω)}$ = $\dfrac{Ν(Α)}{Ν(Ω)} + \dfrac{Ν(Β)}{Ν(Ω)} - \dfrac{N(A \cap B)}{N(Ω)}$ και επομένως P(AUB)=P(A)+P(B)-P(A∩B) Η ιδιότητα αυτή είναι γνωστή ως προσθετικός νόμος (additive law).
ΑΠΟΔΕΙΞΗ
Επειδή A$\subseteq$B έχουμε διαδοχικά: $N(A)$ ≤ $N(B)$ $\dfrac{Ν(Α)}{Ν(Ω)}$ ≤ $\dfrac{Ν(Β)}{Ν(Ω)}$ $P(A)$ ≤ $P(B)$ 5. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A-B)=P(A)-P(A∩B)
ΑΠΟΔΕΙΞΗ
Επειδή τα ενδεχόμενα A-B και A∩B είναι ασυμβίβαστα και (A-B)U(A∩B)=A, έχουμε: P(A)=P(A-B)+P(A∩B) Άρα P(A-B)=P(A)-P(A∩B) |
ΕΦΑΡΜΟΓΕΣ 1. Ρίχνουμε δύο “αμερόληπτα” ζάρια. Να βρεθεί η πιθανότητα να φέρουμε ως αποτέλεσμα δύο διαδοχικούς αριθμούς. ΛΥΣΗ
Από τον πίνακα αυτόν έχουμε ότι ο δειγματικός χώρος Ω έχει 36 ισοπίθανα δυνατά αποτελέσματα, δηλαδή N(Ω)=36 .
A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5)} δηλαδή N(A)=10
Άρα, η πιθανότητα να φέρουμε δύο διαδοχικούς αριθμούς είναι $\dfrac{5}{18} \approx 0,28$ ή, στη γλώσσα των ποσοστών, περίπου 28%.
2. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω δίνονται P(A)=0,5 , P(B)=0,4 και P(A∩B)=0,2. Να βρεθεί η πιθανότητα των ενδεχομένων: i) Να μην πραγματοποιηθεί κανένα από τα Α και Β. ΛΥΣΗ i) Το ενδεχόμενο να μην πραγματοποιηθεί κανένα από τα Α και Β είναι το (AUB)'. Επομένως
P((AUB)')=1 - P(AUB) =1-(P(A)+P(B)-P(A∩B)) =1-(0,5 + 0,4 - 0,2) =1 - 0,7 =0,3.
ii) Το ενδεχόμενο να πραγματοποιηθεί μόνο ένα από τα Α και Β είναι το (Α-Β)U(Β-A). Επειδή τα ενδεχόμενα Α-Β και Β-A είναι ασυμβίβαστα, έχουμε: P((Α-Β)U(Β-A))= P(Α)-Β)+ P(Β-A)) =P(Α)-P(Α∩Β)+P(B)-P(Α∩Β) =P(Α)+P(B)-2P(Α∩Β) =0,5 + 0,4 -2 ·0,2 =0,5 . 3. Για δύο ενδεχόμενα ενός δειγματικού χώρου Ω ισχύουν P(Α)=0,6 και P(B)=0,5. i) Να εξεταστεί αν τα Α και Β είναι ασυμβίβαστα. ΛΥΣΗ i) Αν τα Α και Β ήταν ασυμβίβαστα, από τον απλό προθετικό νόμο των πιθανοτήτων θα είχαμε: P(A∪B) = P(Α) + P(B) = 0, 6 + 0,5 = 1,1 ισχύει, δηλαδή, P(A∪B)>1, που είναι άτοπο. Άρα, τα Α και Β δεν είναι ασυμβίβαστα.
ii) Επειδή A∩ B$\subseteq$B και A∩ B$\subseteq$A , έχουμε P(A∩ B)≤P(B) και P(A∩ B)≤P(A), επομένως P(A∩ B)≤0,5 (1) Από τον προσθετικό νόμο των πιθανοτήτων έχουμε: P(AUB)=P(A)+P(B)-P(A∩ B) P(AUB)=0,6 + 0,5 - P(A∩ B) Όμως P(AUB)≤ 1. Επομένως: 0,6 + 0,5 - P(A∩B)≤ 1 0,6 + 0,5 -1 ≤ P(A∩B) 0,1 ≤ P(A∩B). (2) Από τις (1) και (2) προκύπτει ότι: 0,1 ≤ P(A∩B) ≤ 0,5.
|
|
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 1ου ΚΕΦΑΛΑΙΟΥ
|