Η Ιφιγένεια σχεδίασε αυτό το παραλληλόγραμμο σε μιλιμετρέ χαρτί.
|
Από τα παραπάνω διαπιστώνουμε ότι ένα πλάγιο παραλληλόγραμμο με βάση β και ύψος υ έχει την ίδια επιφάνεια με ένα ορθογώνιο παραλληλόγραμμο με διαστάσεις ίσες με β και υ.
Εφαρμογή 1η Στη διαπίστωση ότι ένα σχήμα μπορεί να χωριστεί σε κομμάτια και αυτά να τοποθετηθούν με διαφορετική διάταξη δημιουργώντας νέα σχήματα που θα έχουν το ίδιο εμβαδό με το αρχικό σχήμα στηρίζεται το αρχαίο κινεζικό παιχνίδι TAN GRAM. Αντίγραψέ το σε ένα χαρτόνι, κόψε κατά μήκος της διαγώνιας γραμμής και δημιούργησε το πρώτο νέο σχήμα: ένα πλάγιο παραλληλόγραμμο με επιφάνεια ίση με του αρχικού σχήματος! Εφαρμογή 2η Στο διπλανό σχήμα φαίνεται το κομμάτι ενός πάρκου που πρέπει να στρωθεί με έτοιμο χλοοτάπητα, ο οποίος πουλιέται σε κομμάτια του 1 τ.μ. και στοιχίζει 20 € το κομμάτι. Πόσα κομμάτια θα χρειαστούν και πόσο θα στοιχίσει; Λύση: Για να βρούμε το εμβαδό του κομματιού αυτού:
Το εμβαδό του κομματιού δείχνει και τον αριθμό των κομματιών χλοοτάπητα, αφού το μετράμε σε τετραγωνικά μέτρα και κάθε κομμάτι χλοοτάπητα είναι 1 τετραγωνικό μέτρο. Για να βρούμε πόσο θα στοιχίσει ο χλοοτάπητας θα πολλαπλασιάσουμε τον αριθμό τον κομματιών με το 20, γιατί 20 € είναι η τιμή κάθε κομματιού χλοοτάπητα................................................... Απάντηση: Θα χρειαστούν .............. κομμάτια χλοοτάπητα και θα στοιχίσει ................. €. Eρωτήσεις για αυτοέλεγχο και συζήτηση Στο κεφάλαιο αυτό συναντήσαμε τους όρους εμβαδό παραλληλογράμμου, βάση και ύψος. Να σχεδιάσεις ένα παραλληλόγραμμο και να βρεις όλα τα ύψη και τις αντίστοιχες βάσεις του.
|